19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genetic changes that accompanied shifts of low pathogenic avian influenza viruses toward higher pathogenicity in poultry

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Avian influenza viruses (AIV) of H5 and H7 subtypes exhibit two different pathotypes in poultry: infection with low pathogenic (LP) strains results in minimal, if any, health disturbances, whereas highly pathogenic (HP) strains cause severe morbidity and mortality. LPAIV of H5 and H7 subtypes can spontaneously mutate into HPAIV. Ten outbreaks caused by HPAIV are known to have been preceded by circulation of a predecessor LPAIV in poultry. Three of them were caused by H5N2 subtype and seven involved H7 subtype in combination with N1, N3, or N7. Here, we review those outbreaks and summarize the genetic changes which resulted in the transformation of LPAIV to HPAIV under natural conditions. Mutations that were found directly in those outbreaks are more likely to be linked to virulence, pathogenesis, and early adaptation of AIV.

          Related collections

          Most cited references128

          • Record: found
          • Abstract: found
          • Article: not found

          Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls.

          In wild aquatic birds and poultry around the world, influenza A viruses carrying 15 antigenic subtypes of hemagglutinin (HA) and 9 antigenic subtypes of neuraminidase (NA) have been described. Here we describe a previously unidentified antigenic subtype of HA (H16), detected in viruses circulating in black-headed gulls in Sweden. In agreement with established criteria for the definition of antigenic subtypes, hemagglutination inhibition assays and immunodiffusion assays failed to detect specific reactivity between H16 and the previously described subtypes H1 to H15. Genetically, H16 HA was found to be distantly related to H13 HA, a subtype also detected exclusively in shorebirds, and the amino acid composition of the putative receptor-binding site of H13 and H16 HAs was found to be distinct from that in HA subtypes circulating in ducks and geese. The H16 viruses contained NA genes that were similar to those of other Eurasian shorebirds but genetically distinct from N3 genes detected in other birds and geographical locations. The European gull viruses were further distinguishable from other influenza A viruses based on their PB2, NP, and NS genes. Gaining information on the full spectrum of avian influenza A viruses and creating reagents for their detection and identification will remain an important task for influenza surveillance, outbreak control, and animal and public health. We propose that sequence analyses of HA and NA genes of influenza A viruses be used for the rapid identification of existing and novel HA and NA subtypes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A review of avian influenza in different bird species.

            Only type A influenza viruses are known to cause natural infections in birds, but viruses of all 15 haemagglutinin and all nine neuraminidase influenza A subtypes in the majority of possible combinations have been isolated from avian species. Influenza A viruses infecting poultry can be divided into two distinct groups on the basis of their ability to cause disease. The very virulent viruses cause highly pathogenic avian influenza (HPAI), in which mortality may be as high as 100%. These viruses have been restricted to subtypes H5 and H7, although not all viruses of these subtypes cause HPAI. All other viruses cause a much milder, primarily respiratory disease, which may be exacerbated by other infections or environmental conditions. Since 1959, primary outbreaks of HPAI in poultry have been reported 17 times (eight since 1990), five in turkeys and 12 in chickens. HPAI viruses are rarely isolated from wild birds, but extremely high isolation rates of viruses of low virulence for poultry have been recorded in surveillance studies, giving overall figures of about 15% for ducks and geese and around 2% for all other species. Influenza viruses have been shown to affect all types of domestic or captive birds in all areas of the world, but the frequency with which primary infections occur in any type of bird depends on the degree of contact there is with feral birds. Secondary spread is usually associated with human involvement, probably by transferring infective faeces from infected to susceptible birds.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transmission of H7N7 avian influenza A virus to human beings during a large outbreak in commercial poultry farms in the Netherlands.

              An outbreak of highly pathogenic avian influenza A virus subtype H7N7 started at the end of February, 2003, in commercial poultry farms in the Netherlands. Although the risk of transmission of these viruses to humans was initially thought to be low, an outbreak investigation was launched to assess the extent of transmission of influenza A virus subtype H7N7 from chickens to humans. All workers in poultry farms, poultry farmers, and their families were asked to report signs of conjunctivitis or influenza-like illness. People with complaints were tested for influenza virus type A subtype H7 (A/H7) infection and completed a health questionnaire about type of symptoms, duration of illness, and possible exposures to infected poultry. 453 people had health complaints--349 reported conjunctivitis, 90 had influenza-like illness, and 67 had other complaints. We detected A/H7 in conjunctival samples from 78 (26.4%) people with conjunctivitis only, in five (9.4%) with influenza-like illness and conjunctivitis, in two (5.4%) with influenza-like illness only, and in four (6%) who reported other symptoms. Most positive samples had been collected within 5 days of symptom onset. A/H7 infection was confirmed in three contacts (of 83 tested), one of whom developed influenza-like illness. Six people had influenza A/H3N2 infection. After 19 people had been diagnosed with the infection, all workers received mandatory influenza virus vaccination and prophylactic treatment with oseltamivir. More than half (56%) of A/H7 infections reported here arose before the vaccination and treatment programme. We noted an unexpectedly high number of transmissions of avian influenza A virus subtype H7N7 to people directly involved in handling infected poultry, and we noted evidence for person-to-person transmission. Our data emphasise the importance of adequate surveillance, outbreak preparedness, and pandemic planning.
                Bookmark

                Author and article information

                Journal
                Virulence
                Virulence
                KVIR
                kvir20
                Virulence
                Taylor & Francis
                2150-5594
                2150-5608
                15 August 2013
                16 July 2013
                16 July 2013
                : 4
                : 6
                : 441-452
                Affiliations
                Friedrich-Loeffler-Institut; Federal Research Institute for Animal Health; Institute of Molecular Biology; Greifswald-Insel Riems, Germany
                Author notes
                [* ]Correspondence to: Thomas C Mettenleiter, Email: thomas.mettenleiter@ 123456fli.bund.de
                Article
                10925710
                10.4161/viru.25710
                5359749
                23863606
                7c1f7f3c-c670-4dd0-8ef2-c04e5ce12aed
                Copyright © 2013 Landes Bioscience

                This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited.

                History
                : 02 May 2013
                : 09 July 2013
                : 10 July 2013
                Page count
                Pages: 12
                Categories
                Review

                Infectious disease & Microbiology
                avian influenza virus,poultry,proteolytic cleavage site,virulence determinants

                Comments

                Comment on this article