15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cell based assay identifies TLR2 and TLR4 stimulating impurities in Interferon beta

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Immunogenicity can have devastating consequences on the safety and efficacy of therapeutic proteins. Therefore, evaluating and mitigating the risk of product immunogenicity is critical for the development these products. This study, showed that Betaseron and Extavia, which are reported to be more immunogenic among IFNβ products in clinical usage, contain residual innate immune response modulating impurities (IIRMIs) capable of activating NF-κB and induced expression of inflammatory mediators. These IIRMIs were undetectable in Rebif or Avonex. The stimulatory effect was attributed solely to IIRMIs because it was evident in murine cells lacking the interferon receptor (IFNAR). The IIRMIs in Betaseron and Extavia triggered NF-κB activation in HEK-293 cells bearing TLR2 and TLR4 in MyD88 dependent manner. Importantly, the IIRMIs in Betaseron induced up-regulation of IL-6, IL-1β, and ccl5 in the skin of IFNAR knock out mice following subcutaneous administration. This indicates that trace level IIRMIs in Betaseron could contribute to the higher immunogenicity rates seen in clinics. Together these data suggest that cell based assays can reveal subtle but clinically relevant differences in IIRMIs following manufacturing changes or between products with the same active ingredients but different manufacturing processes. Appreciating these differences may inform immunogenicity risk assessments.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells.

          Toll-like receptors (TLRs) sense microbial products and initiate adaptive immune responses by activating dendritic cells (DCs). As pathogens may contain several TLR agonists, we sought to determine whether different TLRs cooperate in DC activation. In human and mouse DCs, TLR3 and TLR4 potently acted in synergy with TLR7, TLR8 and TLR9 in the induction of a selected set of genes. Synergic TLR stimulation increased production of interleukins 12 and 23 and increased the Delta-4/Jagged-1 ratio, leading to DCs with enhanced and sustained T helper type 1-polarizing capacity. Global gene transcriptional analysis showed that TLR synergy 'boosted' only approximately 1% of the transcripts induced by single TLR agonists. These results identify a 'combinatorial code' by which DCs discriminate pathogens and suggest new strategies for promoting T helper type 1 responses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cutting edge: repurification of lipopolysaccharide eliminates signaling through both human and murine toll-like receptor 2.

            Toll-like receptor (TLR) 2 has recently been associated with cellular responses to numerous microbial products, including LPS and bacterial lipoproteins. However, many preparations of LPS contain low concentrations of highly bioactive contaminants described previously as "endotoxin protein," suggesting that these contaminants could be responsible for the TLR2-mediated signaling observed upon LPS stimulation. To test this hypothesis, commercial preparations of LPS were subjected to a modified phenol re-extraction protocol to eliminate endotoxin protein. While it did not influence the ability to stimulate cells from wild-type mice, repurification eliminated the ability of LPS to activate cells from C3H/HeJ (Lpsd) mice. Additionally, only cell lines transfected with human TLR4, but not human or murine TLR2, acquired responsiveness to both re-extracted LPS and to a protein-free, synthetic preparation of lipid A. These results suggest that neither human nor murine TLR2 plays a role in LPS signaling in the absence of contaminating endotoxin protein.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Immunomodulatory activity of interferon-beta

              Multiple sclerosis (MS) is a complex disorder of the central nervous system that appears to be driven by a shift in immune functioning toward excess inflammation that results in demyelination and axonal loss. Beta interferons were the first class of disease-modifying therapies to be approved for patients with MS after treatment with this type I interferon improved the course of MS on both clinical and radiological measures in clinical trials. The mechanism of action of interferon-beta appears to be driven by influencing the immune system at many levels, including antigen-presenting cells, T cells, and B cells. One effect of these interactions is to shift cytokine networks in favor of an anti-inflammatory effect. The pleiotropic mechanism of action may be a critical factor in determining the efficacy of interferon-beta in MS. This review will focus on select immunological mechanisms that are influenced by this type I cytokine.
                Bookmark

                Author and article information

                Contributors
                daniela.verthelyi@fda.hhs.gov
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                5 September 2017
                5 September 2017
                2017
                : 7
                : 10490
                Affiliations
                ISNI 0000 0001 2243 3366, GRID grid.417587.8, Laboratory of Immunology, Division of Biotechnology Review and Research III, Office of Biotechnology Products, , Center for Drug Evaluation and Research, Food and Drug Administration, ; Silver Spring, Maryland United States of America
                Article
                9981
                10.1038/s41598-017-09981-w
                5585229
                28874687
                7c2b628a-5442-4cc4-804e-0878ecc4f7be
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 15 March 2017
                : 1 August 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article