22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Great tits search for, capture, kill and eat hibernating bats.

      Biology letters
      Animals, Appetitive Behavior, physiology, Chiroptera, Hibernation, Hungary, Observation, Passeriformes, Predatory Behavior

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ecological pressure paired with opportunism can lead to surprising innovations in animal behaviour. Here, we report predation of great tits (Parus major) on hibernating pipistrelle bats (Pipistrellus pipistrellus) at a Hungarian cave. Over two winters, we directly observed 18 predation events. The tits specifically and systematically searched for and killed bats for food. A substantial decrease in predation on bats after experimental provisioning of food to the tits further supports the hypothesis that bat-killing serves a foraging purpose in times of food scarcity. We finally conducted a playback experiment to test whether tits would eavesdrop on calls of awakening bats to find them in rock crevices. The tits could clearly hear the calls and were attracted to the loudspeaker. Records for tit predation on bats at this cave now span more than ten years and thus raise the question of whether cultural transmission plays a role for the spread of this foraging innovation.

          Related collections

          Most cited references5

          • Record: found
          • Abstract: not found
          • Article: not found

          TOOL-USING AND AIMED THROWING IN A COMMUNITY OF FREE-LIVING CHIMPANZEES.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Foraging innovation in the guppy.

            When novel behaviour patterns spread through animal populations, typically one animal will initiate the diffusion. It is not known whether such 'innovators' are particularly creative individuals, individuals exposed to the appropriate environmental contingencies, or individuals in a particular motivational state. We describe three experiments that investigated the factors influencing foraging innovation in the guppy Poecilia reticulata. We exposed small laboratory populations of fish to novel foraging tasks, which involved exploration and problem solving to locate a novel food source. Experiments 1 and 2 found that (1) females were more likely to innovate than males, (2) food-deprived fish were more likely to innovate than nonfood-deprived subjects, and (3) smaller fish were more likely to innovate than larger fish. We suggest that the sex difference may reflect parental investment asymmetries in males and females. Experiment 3 found that past innovators were more likely to innovate than past noninnovators. Collectively, the results suggest that differences in foraging innovation in guppies are best accounted for by differences in motivational state, but, in addition, guppies may vary in their predisposition to innovate. Copyright 1999 The Association for the Study of Animal Behaviour.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Brain size, innovative propensity and migratory behaviour in temperate Palaearctic birds.

              The evolution of migration in birds remains an outstanding, unresolved question in evolutionary ecology. A particularly intriguing question is why individuals in some species have been selected to migrate, whereas in other species they have been selected to be sedentary. In this paper, we suggest that this diverging selection might partially result from differences among species in the behavioural flexibility of their responses to seasonal changes in the environment. This hypothesis is supported in a comparative analysis of Palaearctic passerines. First, resident species tend to rely more on innovative feeding behaviours in winter, when food is harder to find, than in other seasons. Second, species with larger brains, relative to their body size, and a higher propensity for innovative behaviours tend to be resident, while less flexible species tend to be migratory. Residence also appears to be less likely in species that occur in more northerly regions, exploit temporally available food sources, inhabit non-buffered habitats and have smaller bodies. Yet, the role of behavioural flexibility as a response to seasonal environments is largely independent of these other factors. Therefore, species with greater foraging flexibility seem to be able to cope with seasonal environments better, while less flexible species are forced to become migratory.
                Bookmark

                Author and article information

                Journal
                19740892
                2817260
                10.1098/rsbl.2009.0611

                Chemistry
                Animals,Appetitive Behavior,physiology,Chiroptera,Hibernation,Hungary,Observation,Passeriformes,Predatory Behavior

                Comments

                Comment on this article