28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      MUC1* Mediates the Growth of Human Pluripotent Stem Cells

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The MUC1 protein is aberrantly expressed on an estimated 75% of all human solid tumor cancers. We recently reported that a transmembrane cleavage product, MUC1*, is the predominant form of the protein on cancer cells [1]. Further, our evidence indicated that MUC1* functions as a growth factor receptor on tumor cells, while the full-length protein appeared to have no growth promoting activity. Here, we report that MUC1* acts as a growth factor receptor on undifferentiated human embryonic stem cells (hESCs). Cleavage of the full-length ectodomain to form MUC1*, a membrane receptor, appears to make binding to its ligand, NM23, possible. Unexpectedly, we found that newly differentiated cells no longer express the cleaved form, MUC1*, or its ligand, NM23. Newly differentiated stem cells exclusively present full-length MUC1. Antibody-induced dimerization of the MUC1* receptor on hESCs stimulated cell growth to a far greater degree than currently used methods that require the addition of exogenous basic fibroblast growth factor (bFGF) as well as factors secreted by fibroblast “feeder cells”. Further, MUC1* mediated growth was shown to be independent of growth stimulated by bFGF or the milieu of factors secreted by feeder cells. Stimulating the MUC1* receptor with either the cognate antibody or its ligand NM23 enabled hESC growth in a feeder cell-free system and produced pluripotent colonies that resisted spontaneous differentiation. These findings suggest that this primal growth mechanism could be utilized to propagate large numbers of pluripotent stem cells for therapeutic interventions.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo.

          Development of a cell therapy for diabetes would be greatly aided by a renewable supply of human beta-cells. Here we show that pancreatic endoderm derived from human embryonic stem (hES) cells efficiently generates glucose-responsive endocrine cells after implantation into mice. Upon glucose stimulation of the implanted mice, human insulin and C-peptide are detected in sera at levels similar to those of mice transplanted with approximately 3,000 human islets. Moreover, the insulin-expressing cells generated after engraftment exhibit many properties of functional beta-cells, including expression of critical beta-cell transcription factors, appropriate processing of proinsulin and the presence of mature endocrine secretory granules. Finally, in a test of therapeutic potential, we demonstrate that implantation of hES cell-derived pancreatic endoderm protects against streptozotocin-induced hyperglycemia. Together, these data provide definitive evidence that hES cells are competent to generate glucose-responsive, insulin-secreting cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            CNS stem cells express a new class of intermediate filament protein.

            Multipotential CNS stem cells receive and implement instructions governing differentiation to diverse neuronal and glial fates. Exploration of the mechanisms generating the many cell types of the brain depends crucially on markers identifying the stem cell state. We describe a gene whose expression distinguishes the stem cells from the more differentiated cells in the neural tube. This gene was named nestin because it is specifically expressed in neuroepithelial stem cells. The predicted amino acid sequence of the nestin gene product shows that nestin defines a distinct sixth class of intermediate filament protein. These observations extend a model in which transitions in intermediate filament gene expression reflect major steps in the pathway of neural differentiation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Feeder-free growth of undifferentiated human embryonic stem cells.

              Previous studies have shown that maintenance of undifferentiated human embryonic stem (hES) cells requires culture on mouse embryonic fibroblast (MEF) feeders. Here we demonstrate a successful feeder-free hES culture system in which undifferentiated cells can be maintained for at least 130 population doublings. In this system, hES cells are cultured on Matrigel or laminin in medium conditioned by MEF. The hES cells maintained on feeders or off feeders express integrin alpha6 and beta1, which may form a laminin-specific receptor. The hES cell populations in feeder-free conditions maintained a normal karyotype, stable proliferation rate, and high telomerase activity. Similar to cells cultured on feeders, hES cells maintained under feeder-free conditions expressed OCT-4, hTERT, alkaline phosphatase, and surface markers including SSEA-4, Tra 1-60, and Tra 1-81. In addition, hES cells maintained without direct feeder contact formed teratomas in SCID/beige mice and differentiated in vitro into cells from all three germ layers. Thus, the cells retain fundamental characteristics of hES cells in this culture system and are suitable for scaleup production.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2008
                3 October 2008
                : 3
                : 10
                : e3312
                Affiliations
                [1 ]Center for Stem Cell Biology and Engineering, University of California Santa Barbara, Santa Barbara, California, United States of America
                [2 ]Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
                [3 ]Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
                [4 ]Minerva Biotechnologies, Waltham, Massachusetts, United States of America
                Dresden University of Technology, Germany
                Author notes

                Conceived and designed the experiments: KSK CCB. Performed the experiments: STH. Analyzed the data: STH KSK DC CCB. Contributed reagents/materials/analysis tools: CCB. Wrote the paper: CCB. Sole or lead inventor on the novel target MUC1*, antibodies and methods to manipulate cancer and stem cell growth by manipulating the MUC1* receptor: CCB.

                Article
                08-PONE-RA-04755R2
                10.1371/journal.pone.0003312
                2553196
                18833326
                7c314926-159d-4a90-8e0d-86ff6292e225
                Hikita et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 19 May 2008
                : 6 September 2008
                Page count
                Pages: 13
                Categories
                Research Article
                Oncology
                Cell Biology/Cell Growth and Division
                Cell Biology/Cell Signaling
                Developmental Biology/Stem Cells

                Uncategorized
                Uncategorized

                Comments

                Comment on this article