129
views
0
recommends
+1 Recommend
0 collections
    8
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Islet-Like Clusters Derived from Mesenchymal Stem Cells in Wharton's Jelly of the Human Umbilical Cord for Transplantation to Control Type 1 Diabetes

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          There is a widespread interest in developing renewable sources of islet-replacement tissue for type I diabetes mellitus. Human mesenchymal cells isolated from the Wharton's jelly of the umbilical cord (HUMSCs), which can be easily obtained and processed compared with embryonic and bone marrow stem cells, possess stem cell properties. HUMSCs may be a valuable source for the generation of islets.

          Methodology and Principal Findings

          HUMSCs were induced to transform into islet-like cell clusters in vitro through stepwise culturing in neuron-conditioned medium. To assess the functional stability of the islet-like cell clusters in vivo, these cell clusters were transplanted into the liver of streptozotocin-induced diabetic rats via laparotomy. Glucose tolerance was measured on week 12 after transplantation accompanied with immunohistochemistry and electron microscopy analysis. These islet-like cell clusters were shown to contain human C-peptide and release human insulin in response to physiological glucose levels. Real-time RT-PCR detected the expressions of insulin and other pancreatic β-cell-related genes ( Pdx1, Hlxb9, Nkx2.2, Nkx6.1, and Glut-2) in these islet-like cell clusters. The hyperglycemia and glucose intolerance in streptozotocin-induced diabetic rats was significantly alleviated after xenotransplantation of islet-like cell clusters, without the use of immunosuppressants. In addition to the existence of islet-like cell clusters in the liver, some special fused liver cells were also found, which characterized by human insulin and nuclei-positive staining and possessing secretory granules.

          Conclusions and Significance

          In this study, we successfully differentiate HUMSCs into mature islet-like cell clusters, and these islet-like cell clusters possess insulin-producing ability in vitro and in vivo. HUMSCs in Wharton's Jelly of the umbilical cord seem to be the preferential source of stem cells to convert into insulin-producing cells, because of the large potential donor pool, its rapid availability, no risk of discomfort for the donor, and low risk of rejection.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          CNS stem cells express a new class of intermediate filament protein.

          Multipotential CNS stem cells receive and implement instructions governing differentiation to diverse neuronal and glial fates. Exploration of the mechanisms generating the many cell types of the brain depends crucially on markers identifying the stem cell state. We describe a gene whose expression distinguishes the stem cells from the more differentiated cells in the neural tube. This gene was named nestin because it is specifically expressed in neuroepithelial stem cells. The predicted amino acid sequence of the nestin gene product shows that nestin defines a distinct sixth class of intermediate filament protein. These observations extend a model in which transitions in intermediate filament gene expression reflect major steps in the pathway of neural differentiation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord.

            The Wharton's jelly of the umbilical cord contains mucoid connective tissue and fibroblast-like cells. Using flow cytometric analysis, we found that mesenchymal cells isolated from the umbilical cord express matrix receptors (CD44, CD105) and integrin markers (CD29, CD51) but not hematopoietic lineage markers (CD34, CD45). Interestingly, these cells also express significant amounts of mesenchymal stem cell markers (SH2, SH3). We therefore investigated the potential of these cells to differentiate into cardiomyocytes by treating them with 5-azacytidine or by culturing them in cardiomyocyte-conditioned medium and found that both sets of conditions resulted in the expression of cardiomyocyte markers, namely N-cadherin and cardiac troponin I. We also showed that these cells have multilineage potential and that, under suitable culture conditions, are able to differentiate into cells of the adipogenic and osteogenic lineages. These findings may have a significant impact on studies of early human cardiac differentiation, functional genomics, pharmacological testing, cell therapy, and tissue engineering by helping to eliminate worrying ethical and technical issues.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes.

              Recent studies have suggested that bone marrow cells possess a broad differentiation potential, being able to form new liver cells, cardiomyocytes and neurons. Several groups have attributed this apparent plasticity to 'transdifferentiation'. Others, however, have suggested that cell fusion could explain these results. Using a simple method based on Cre/lox recombination to detect cell fusion events, we demonstrate that bone-marrow-derived cells (BMDCs) fuse spontaneously with neural progenitors in vitro. Furthermore, bone marrow transplantation demonstrates that BMDCs fuse in vivo with hepatocytes in liver, Purkinje neurons in the brain and cardiac muscle in the heart, resulting in the formation of multinucleated cells. No evidence of transdifferentiation without fusion was observed in these tissues. These observations provide the first in vivo evidence for cell fusion of BMDCs with neurons and cardiomyocytes, raising the possibility that cell fusion may contribute to the development or maintenance of these key cell types.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2008
                16 January 2008
                : 3
                : 1
                : e1451
                Affiliations
                [1 ]Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
                [2 ]Department of Anatomy, School of Medicine, National Yang-Ming University, Taipei, Taiwan
                [3 ]Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
                University of California at Los Angeles, United States of America
                Author notes
                * To whom correspondence should be addressed. E-mail: shliu@ 123456ha.mc.ntu.edu.tw

                Conceived and designed the experiments: SL. Performed the experiments: KC YF KC. Analyzed the data: KC YF KC. Wrote the paper: SL KC.

                Article
                07-PONE-RA-02559R2
                10.1371/journal.pone.0001451
                2180192
                18197261
                7c34169d-656c-445f-ab20-0e295e1b6955
                Chao et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 23 October 2007
                : 20 December 2007
                Page count
                Pages: 9
                Categories
                Research Article
                Biotechnology/Chemical Biology of the Cell
                Diabetes and Endocrinology/Type 1 Diabetes
                Gastroenterology and Hepatology/Pancreas

                Uncategorized
                Uncategorized

                Comments

                Comment on this article