22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Blood Pressure and Penumbral Sustenance in Stroke from Large Vessel Occlusion

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The global burden of stroke remains high, and of the various subtypes of stroke, large vessel occlusions (LVOs) account for the largest proportion of stroke-related death and disability. Several randomized controlled trials in 2015 changed the landscape of stroke care worldwide, with endovascular thrombectomy (ET) now the standard of care for all eligible patients. With the proven success of this therapy, there is a renewed focus on penumbral sustenance. In this review, we describe the ischemic penumbra, collateral circulation, autoregulation, and imaging assessment of the penumbra. Blood pressure goals in acute stroke remain controversial, and we review the current data and suggest an approach for induced hypertension in the acute treatment of patients with LVOs. Finally, in addition to reperfusion and enhanced perfusion, efforts focused on developing therapeutic targets that afford neuroprotection and augment neural repair will gain increasing importance. ET has revolutionized stroke care, and future emphasis will be placed on promoting penumbral sustenance, which will increase patient eligibility for this highly effective therapy and reduce overall stroke-related death and disability.

          Related collections

          Most cited references158

          • Record: found
          • Abstract: found
          • Article: not found

          Collateral circulation.

          The collateral circulation plays a pivotal role in the pathophysiology of cerebral ischemia. Current knowledge of the collateral circulation remains sparse, largely because of prior limitations in methods for evaluation of these diminutive routes of cerebral blood flow. Anatomic descriptions of the collateral circulation often focus on more proximal anastomoses at the circle of Willis, neglecting secondary collateral pathways provided by leptomeningeal vessels. Pathophysiological recruitment of collateral vessels likely depends on the temporal course of numerous compensatory hemodynamic, metabolic, and neural mechanisms. Subsequent endurance of these protective vascular pathways may determine the severity of ischemic injury. Characterization of the collateral circulation with advanced neuroimaging modalities that provide angiographic information and perfusion data may elucidate critical determinants of collateral blood flow. Such information on the status of the collateral circulation may be used to guide therapeutic interventions. Prognostication and risk stratification may also be improved by routine evaluation of collateral blood flow. Contemporary understanding of the collateral circulation may be greatly enhanced through further refinement of neuroimaging modalities that correlate angiographic findings with perfusion status, providing the basis for future therapeutic and prognostic applications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dexmedetomidine vs midazolam or propofol for sedation during prolonged mechanical ventilation: two randomized controlled trials.

            Long-term sedation with midazolam or propofol in intensive care units (ICUs) has serious adverse effects. Dexmedetomidine, an α(2)-agonist available for ICU sedation, may reduce the duration of mechanical ventilation and enhance patient comfort. To determine the efficacy of dexmedetomidine vs midazolam or propofol (preferred usual care) in maintaining sedation; reducing duration of mechanical ventilation; and improving patients' interaction with nursing care. Two phase 3 multicenter, randomized, double-blind trials carried out from 2007 to 2010. The MIDEX trial compared midazolam with dexmedetomidine in ICUs of 44 centers in 9 European countries; the PRODEX trial compared propofol with dexmedetomidine in 31 centers in 6 European countries and 2 centers in Russia. Included were adult ICU patients receiving mechanical ventilation who needed light to moderate sedation for more than 24 hours (midazolam, n = 251, vs dexmedetomidine, n = 249; propofol, n = 247, vs dexmedetomidine, n = 251). Sedation with dexmedetomidine, midazolam, or propofol; daily sedation stops; and spontaneous breathing trials. For each trial, we tested whether dexmedetomidine was noninferior to control with respect to proportion of time at target sedation level (measured by Richmond Agitation-Sedation Scale) and superior to control with respect to duration of mechanical ventilation. Secondary end points were patients' ability to communicate pain (measured using a visual analogue scale [VAS]) and length of ICU stay. Time at target sedation was analyzed in per-protocol population (midazolam, n = 233, vs dexmedetomidine, n = 227; propofol, n = 214, vs dexmedetomidine, n = 223). Dexmedetomidine/midazolam ratio in time at target sedation was 1.07 (95% CI, 0.97-1.18) and dexmedetomidine/propofol, 1.00 (95% CI, 0.92-1.08). Median duration of mechanical ventilation appeared shorter with dexmedetomidine (123 hours [IQR, 67-337]) vs midazolam (164 hours [IQR, 92-380]; P = .03) but not with dexmedetomidine (97 hours [IQR, 45-257]) vs propofol (118 hours [IQR, 48-327]; P = .24). Patients' interaction (measured using VAS) was improved with dexmedetomidine (estimated score difference vs midazolam, 19.7 [95% CI, 15.2-24.2]; P < .001; and vs propofol, 11.2 [95% CI, 6.4-15.9]; P < .001). Length of ICU and hospital stay and mortality were similar. Dexmedetomidine vs midazolam patients had more hypotension (51/247 [20.6%] vs 29/250 [11.6%]; P = .007) and bradycardia (35/247 [14.2%] vs 13/250 [5.2%]; P < .001). Among ICU patients receiving prolonged mechanical ventilation, dexmedetomidine was not inferior to midazolam and propofol in maintaining light to moderate sedation. Dexmedetomidine reduced duration of mechanical ventilation compared with midazolam and improved patients' ability to communicate pain compared with midazolam and propofol. More adverse effects were associated with dexmedetomidine. clinicaltrials.gov Identifiers: NCT00481312, NCT00479661.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effects of alteplase beyond 3 h after stroke in the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET): a placebo-controlled randomised trial.

              Whether intravenous tissue plasminogen activator (alteplase) is effective beyond 3 h after onset of acute ischaemic stroke is unclear. We aimed to test whether alteplase given 3-6 h after stroke onset promotes reperfusion and attenuates infarct growth in patients who have a mismatch in perfusion-weighted MRI (PWI) and diffusion-weighted MRI (DWI). We prospectively and randomly assigned 101 patients to receive alteplase or placebo 3-6 h after onset of ischaemic stroke. PWI and DWI were done before and 3-5 days after therapy, with T2-weighted MRI at around day 90. The primary endpoint was infarct growth between baseline DWI and the day 90 T2 lesion in mismatch patients. Major secondary endpoints were reperfusion, good neurological outcome, and good functional outcome. Patients, caregivers, and investigators were unaware of treatment allocations. Primary analysis was per protocol. This study is registered with ClinicalTrials.gov, number NCT00238537. We randomly assigned 52 patients to alteplase and 49 patients to placebo. Mean age was 71.6 years, and median score on the National Institutes of Health stroke scale was 13. 85 of 99 (86%) patients had mismatch of PWI and DWI. The geometric mean infarct growth (exponential of the mean log of relative growth) was 1.24 with alteplase and 1.78 with placebo (ratio 0.69, 95% CI 0.38-1.28; Student's t test p=0.239); the median relative infarct growth was 1.18 with alteplase and 1.79 with placebo (ratio 0.66, 0.36-0.92; Wilcoxon's test p=0.054). Reperfusion was more common with alteplase than with placebo and was associated with less infarct growth (p=0.001), better neurological outcome (p<0.0001), and better functional outcome (p=0.010) than was no reperfusion. Alteplase was non-significantly associated with lower infarct growth and significantly associated with increased reperfusion in patients who had mismatch. Because reperfusion was associated with improved clinical outcomes, phase III trials beyond 3 h after treatment are warranted.
                Bookmark

                Author and article information

                Contributors
                URI : http://frontiersin.org/people/u/429395
                URI : http://frontiersin.org/people/u/443409
                URI : http://frontiersin.org/people/u/445152
                Journal
                Front Neurol
                Front Neurol
                Front. Neurol.
                Frontiers in Neurology
                Frontiers Media S.A.
                1664-2295
                03 July 2017
                2017
                : 8
                : 317
                Affiliations
                [1] 1Department of Neurology, Massachusetts General Hospital, Harvard Medical School , Boston, MA, United States
                [2] 2Neuroendovascular Service, Massachusetts General Hospital, Harvard Medical School , Boston, MA, United States
                [3] 3Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School , Boston, MA, United States
                [4] 4Interventional Neuroradiology, Monash Imaging, Monash Health, Monash University , Melbourne, VIC, Australia
                Author notes

                Edited by: Bruce Campbell, University of Melbourne, Australia

                Reviewed by: Nawaf Yassi, University of Melbourne, Australia; Craig S. Anderson, University of Sydney, Australia

                *Correspondence: Thabele M. Leslie-Mazwi, tleslie-mazwi@ 123456mgh.harvard.edu

                Specialty section: This article was submitted to Stroke, a section of the journal Frontiers in Neurology

                Article
                10.3389/fneur.2017.00317
                5494536
                28717354
                7c3d821d-d003-4e8e-a601-d43fa050e7db
                Copyright © 2017 Regenhardt, Das, Stapleton, Chandra, Rabinov, Patel, Hirsch and Leslie-Mazwi.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 01 May 2017
                : 16 June 2017
                Page count
                Figures: 4, Tables: 0, Equations: 0, References: 204, Pages: 17, Words: 15873
                Categories
                Neuroscience
                Review

                Neurology
                stroke,penumbra,blood pressure,thrombectomy,pressor therapy,neuroprotection
                Neurology
                stroke, penumbra, blood pressure, thrombectomy, pressor therapy, neuroprotection

                Comments

                Comment on this article