10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Antiviral, Antibacterial, Antifungal, and Antiparasitic Properties of Propolis: A Review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Propolis is a complex phytocompound made from resinous and balsamic material harvested by bees from flowers, branches, pollen, and tree exudates. Humans have used propolis therapeutically for centuries. The aim of this article is to provide comprehensive review of the antiviral, antibacterial, antifungal, and antiparasitic properties of propolis. The mechanisms of action of propolis are discussed. There are two distinct impacts with regards to antimicrobial and anti-parasitic properties of propolis, on the pathogens and on the host. With regards to the pathogens, propolis acts by disrupting the ability of the pathogens to invade the host cells by forming a physical barrier and inhibiting enzymes and proteins needed for invasion into the host cells. Propolis also inhibits the replication process of the pathogens. Moreover, propolis inhibits the metabolic processes of the pathogens by disrupting cellular organelles and components responsible for energy production. With regard to the host, propolis functions as an immunomodulator. It upregulates the innate immunity and modulates the inflammatory signaling pathways. Propolis also helps maintain the host’s cellular antioxidant status. More importantly, a small number of human clinical trials have demonstrated the efficacy and the safety of propolis as an adjuvant therapy for pathogenic infections.

          Related collections

          Most cited references208

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015

          Summary Background The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding Bill & Melinda Gates Foundation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Plant polyphenols: chemical properties, biological activities, and synthesis.

            Eating five servings of fruits and vegetables per day! This is what is highly recommended and heavily advertised nowadays to the general public to stay fit and healthy! Drinking green tea on a regular basis, eating chocolate from time to time, as well as savoring a couple of glasses of red wine per day have been claimed to increase life expectancy even further! Why? The answer is in fact still under scientific scrutiny, but a particular class of compounds naturally occurring in fruits and vegetables is considered to be crucial for the expression of such human health benefits: the polyphenols! What are these plant products really? What are their physicochemical properties? How do they express their biological activity? Are they really valuable for disease prevention? Can they be used to develop new pharmaceutical drugs? What recent progress has been made toward their preparation by organic synthesis? This Review gives answers from a chemical perspective, summarizes the state of the art, and highlights the most significant advances in the field of polyphenol research. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology.

              Land-adapted plants appeared between about 480 and 360 million years ago in the mid-Palaeozoic era, originating from charophycean green algae. The successful adaptation to land of these prototypes of amphibious plants - when they emerged from an aquatic environment onto the land - was achieved largely by massive formation of "phenolic UV light screens". In the course of evolution, plants have developed the ability to produce an enormous number of phenolic secondary metabolites, which are not required in the primary processes of growth and development but are of vital importance for their interaction with the environment, for their reproductive strategy and for their defense mechanisms. From a biosynthetic point of view, beside methylation catalyzed by O-methyltransferases, acylation and glycosylation of secondary metabolites, including phenylpropanoids and various derived phenolic compounds, are fundamental chemical modifications. Such modified metabolites have altered polarity, volatility, chemical stability in cells but also in solution, ability for interaction with other compounds (co-pigmentation) and biological activity. The control of the production of plant phenolics involves a matrix of potentially overlapping regulatory signals. These include developmental signals, such as during lignification of new growth or the production of anthocyanins during fruit and flower development, and environmental signals for protection against abiotic and biotic stresses. For some of the key compounds, such as the flavonoids, there is now an excellent understanding of the nature of those signals and how the signal transduction pathway connects through to the activation of the phenolic biosynthetic genes. Within the plant environment, different microorganisms can coexist that can establish various interactions with the host plant and that are often the basis for the synthesis of specific phenolic metabolites in response to these interactions. In the rhizosphere, increasing evidence suggests that root specific chemicals (exudates) might initiate and manipulate biological and physical interactions between roots and soil organisms. These interactions include signal traffic between roots of competing plants, roots and soil microbes, and one-way signals that relate the nature of chemical and physical soil properties to the roots. Plant phenolics can also modulate essential physiological processes such as transcriptional regulation and signal transduction. Some interesting effects of plant phenolics are also the ones associated with the growth hormone auxin. An additional role for flavonoids in functional pollen development has been observed. Finally, anthocyanins represent a class of flavonoids that provide the orange, red and blue/purple colors to many plant tissues. According to the coevolution theory, red is a signal of the status of the tree to insects that migrate to (or move among) the trees in autumn. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Role: Academic Editor
                Journal
                Foods
                Foods
                foods
                Foods
                MDPI
                2304-8158
                11 June 2021
                June 2021
                : 10
                : 6
                : 1360
                Affiliations
                [1 ]Kebun Efi, Kabanjahe, North Sumatra 2217, Indonesia
                [2 ]Peerzadiguda, Uppal, Hyderabad 500039, Telangana, India; dr.ckavita@ 123456gmail.com
                [3 ]Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10 St., 10-748 Olsztyn, Poland; dudek06@ 123456wp.pl or
                [4 ]The Royal London Hospital, Whitechapel Rd, Whitechapel, London E1 1FR, UK; munirrav@ 123456yahoo.co.uk
                [5 ]Rajarajeswari Dental College & Hospital, No.14, Ramohalli Cross, Mysore Road, Kumbalgodu, Bengaluru 560074, Karnataka, India; kripalkrishna@ 123456yahoo.com
                [6 ]Apiceutical Research Centre, Unit 3b Enterprise Way, Whitby, North Yorkshire YO18 7NA, UK; james.fearnley@ 123456beearc.com
                [7 ]Food Science Program, School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland CBD, Auckland 1010, New Zealand
                Author notes
                Author information
                https://orcid.org/0000-0002-7881-1845
                https://orcid.org/0000-0002-6259-5607
                https://orcid.org/0000-0001-9525-6962
                Article
                foods-10-01360
                10.3390/foods10061360
                8231288
                34208334
                7c4d4fc7-3419-418a-ae08-28ce061ad562
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 19 May 2021
                : 10 June 2021
                Categories
                Review

                propolis,antiviral,antibacterial,antifungal,antiparasitic,phytochemical,apiculture,antioxidant,anti-inflammatory

                Comments

                Comment on this article