1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Precisely controlled and deeply penetrated micro-nano hybrid multifunctional motors with enhanced antibacterial activity against refractory biofilm infections

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          The biofilm matrix.

          The microorganisms in biofilms live in a self-produced matrix of hydrated extracellular polymeric substances (EPS) that form their immediate environment. EPS are mainly polysaccharides, proteins, nucleic acids and lipids; they provide the mechanical stability of biofilms, mediate their adhesion to surfaces and form a cohesive, three-dimensional polymer network that interconnects and transiently immobilizes biofilm cells. In addition, the biofilm matrix acts as an external digestive system by keeping extracellular enzymes close to the cells, enabling them to metabolize dissolved, colloidal and solid biopolymers. Here we describe the functions, properties and constituents of the EPS matrix that make biofilms the most successful forms of life on earth.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bacterial biofilms: a common cause of persistent infections.

            Bacteria that attach to surfaces aggregate in a hydrated polymeric matrix of their own synthesis to form biofilms. Formation of these sessile communities and their inherent resistance to antimicrobial agents are at the root of many persistent and chronic bacterial infections. Studies of biofilms have revealed differentiated, structured groups of cells with community properties. Recent advances in our understanding of the genetic and molecular basis of bacterial community behavior point to therapeutic targets that may provide a means for the control of biofilm infections.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biofilms: the matrix revisited.

              Microbes often construct and live within surface-associated multicellular communities known as biofilms. The precise structure, chemistry and physiology of the biofilm all vary with the nature of its resident microbes and local environment. However, an important commonality among biofilms is that their structural integrity critically depends upon an extracellular matrix produced by their constituent cells. Extracellular matrices might be as diverse as biofilms, and they contribute significantly to the organization of the community. This review discusses recent advances in our understanding of the extracellular matrix and its role in biofilm biology.
                Bookmark

                Author and article information

                Journal
                Journal of Hazardous Materials
                Journal of Hazardous Materials
                Elsevier BV
                03043894
                August 2022
                August 2022
                : 436
                : 129210
                Article
                10.1016/j.jhazmat.2022.129210
                35739732
                7c554578-a759-42c2-9d27-4ff9a9e2e4ea
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by-nc/4.0/

                History

                Comments

                Comment on this article