Blog
About

15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Cytogenetic abnormalities of tumor-associated endothelial cells in human malignant tumors.

      The American Journal of Pathology

      biosynthesis, Antigens, CD, Carcinoma, Renal Cell, blood supply, genetics, Cell Separation, Chromosomal Proteins, Non-Histone, Chromosome Aberrations, Endothelial Cells, pathology, Flow Cytometry, Glycoproteins, Humans, Immunohistochemistry, In Situ Hybridization, Fluorescence, Kidney Neoplasms, Neovascularization, Pathologic, Peptides, Reverse Transcriptase Polymerase Chain Reaction

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tumor blood vessels are thought to contain genetically normal and stable endothelial cells (ECs), unlike tumor cells, which typically display genetic instability. Yet, chromosomal aberration in human tumor-associated ECs (hTECs) in carcinoma has not yet been investigated. Here we isolated TECs from 20 human renal cell carcinomas and analyzed their cytogenetic abnormalities. The degree of aneuploidy was analyzed by fluorescence in situ hybridization using chromosome 7 and chromosome 8 DNA probes in isolated hTECs. In human renal cell carcinomas, 22-58% (median, 33%) of uncultured hTECs were aneuploid, whereas normal ECs were diploid. The mechanisms governing TEC aneuploidy were then studied using mouse TECs (mTECs) isolated from xenografts of human epithelial tumors. To investigate the contribution of progenitor cells to aneuploidy in mTECs, CD133(+) and CD133(-) mTECs were compared for aneuploidy. CD133(+) mTECs showed aneuploidy more frequently than CD133(-) mTECs. This is the first report showing cytogenetic abnormality of hTECs in carcinoma, contrary to traditional belief. Cytogenetic alterations in tumor vessels of carcinoma therefore can occur and may play a significant role in modifying tumor- stromal interactions.

          Related collections

          Author and article information

          Journal
          19875502
          2789618
          10.2353/ajpath.2009.090202

          Comments

          Comment on this article