52
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Data- and knowledge-based modeling of gene regulatory networks: an update

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Gene regulatory network inference is a systems biology approach which predicts interactions between genes with the help of high-throughput data. In this review, we present current and updated network inference methods focusing on novel techniques for data acquisition, network inference assessment, network inference for interacting species and the integration of prior knowledge. After the advance of Next-Generation-Sequencing of cDNAs derived from RNA samples (RNA-Seq) we discuss in detail its application to network inference. Furthermore, we present progress for large-scale or even full-genomic network inference as well as for small-scale condensed network inference and review advances in the evaluation of network inference methods by crowdsourcing. Finally, we reflect the current availability of data and prior knowledge sources and give an outlook for the inference of gene regulatory networks that reflect interacting species, in particular pathogen-host interactions.

          Related collections

          Most cited references141

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Emergence of scaling in random networks

          Systems as diverse as genetic networks or the world wide web are best described as networks with complex topology. A common property of many large networks is that the vertex connectivities follow a scale-free power-law distribution. This feature is found to be a consequence of the two generic mechanisms that networks expand continuously by the addition of new vertices, and new vertices attach preferentially to already well connected sites. A model based on these two ingredients reproduces the observed stationary scale-free distributions, indicating that the development of large networks is governed by robust self-organizing phenomena that go beyond the particulars of the individual systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            featureCounts: An efficient general-purpose program for assigning sequence reads to genomic features

            , , (2013)
            Next-generation sequencing technologies generate millions of short sequence reads, which are usually aligned to a reference genome. In many applications, the key information required for downstream analysis is the number of reads mapping to each genomic feature, for example to each exon or each gene. The process of counting reads is called read summarization. Read summarization is required for a great variety of genomic analyses but has so far received relatively little attention in the literature. We present featureCounts, a read summarization program suitable for counting reads generated from either RNA or genomic DNA sequencing experiments. featureCounts implements highly efficient chromosome hashing and feature blocking techniques. It is considerably faster than existing methods (by an order of magnitude for gene-level summarization) and requires far less computer memory. It works with either single or paired-end reads and provides a wide range of options appropriate for different sequencing applications. featureCounts is available under GNU General Public License as part of the Subread (http://subread.sourceforge.net) or Rsubread (http://www.bioconductor.org) software packages.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Sparsity and smoothness via the fused lasso

                Bookmark

                Author and article information

                Journal
                EXCLI J
                EXCLI J
                EXCLI J
                EXCLI Journal
                Leibniz Research Centre for Working Environment and Human Factors
                1611-2156
                02 March 2015
                2015
                : 14
                : 346-378
                Affiliations
                [1 ]Research Group Systems Biology / Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, Beutenbergstr. 11a, 07745 Jena, Germany
                [2 ]BioControl Jena GmbH, Wildenbruchstr. 15, 07745 Jena, Germany
                Author notes
                *To whom correspondence should be addressed: Reinhard Guthke, Research Group Systems Biology / Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, Beutenbergstr. 11a, 07745 Jena, Germany, Tel.: +49 5321083; Fax: +49 5320803, E-mail: reinhard.guthke@ 123456hki-jena.de
                Article
                2015-168 Doc346
                10.17179/excli2015-168
                4817425
                27047314
                7c5f1798-d47c-4cc3-ab33-3fcf2cf5e8d6
                Copyright © 2015 Linde et al.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence ( http://creativecommons.org/licenses/by/4.0/) You are free to copy, distribute and transmit the work, provided the original author and source are credited.

                History
                : 29 January 2015
                : 10 February 2015
                Categories
                Review Article

                gene regulatory networks,modeling,reverse engineering,network inference,prior knowledge,rna-seq

                Comments

                Comment on this article