2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Development of an immunoassay using recombinant outer membrane protein A and flagellin for diagnosis of goats with melioidosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Among domestic animals, melioidosis is one of the most common diseases reported in goat, sheep, and swine. To evaluate the specific antibodies in goats with melioidosis, we developed a serology test using recombinant outer membrane protein A (OmpA) and flagellin (FliC) of Burkholderia pseudomallei as antigens. DNA corresponding to each antigen was cloned into a pET32a vector and expressed in Escherichia coli. Essentially, the recombinant OmpA and FliC were expressed in a soluble form that could be isolated with 95% homogeneity. Both recombinants could be recognized by rabbit antibodies prepared against heat-inactivated B. pseudomallei (1:1,000) on a Western blot. Subsequently, we demonstrated that both recombinants could capture the antibodies present in goat with naturally occurring melioidosis (optimized titer 1:40) while not cross-reacting with the serum samples of goats naturally infected by Corynebacterium pseudotuberculosis or Staphylococcus aureus. Finally, an enzyme-linked immunosorbent assay (ELISA) using 20 goat serum samples without melioidosis and 10 goat serum samples with melioidosis demonstrated that the infected group has significantly higher antibody titer levels than the normal group ( P<0.001) when using either OmpA or FliC as an antigen. However, the sensitivity (100%) of the assay using OmpA was superior to that (90%) from using FliC. Serological tests that are commonly used often rely on antigens from crude cell extracts, which pose risks for laboratory-acquired infections and inconsistency in their preparation; however, use of recombinant OmpA is safe; it can potentially be used as a reagent in testing for goat melioidosis.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Melioidosis in animals: a review on epizootiology, diagnosis and clinical presentation.

          Melioidosis, an infectious disease caused by Burkholderia pseudomallei is an emerging disease with high impact on animals and man. In different animal species, the clinical course varies and delayed diagnosis poses risks for the dissemination of the agent in non-endemic areas. Not only migration and transport of animals around the world but also tourism increases the risk that melioidosis can leave its endemic boundaries and establish itself elsewhere. Detection of the agent is a major challenge, as the agent has to be handled in laboratories of biosafety level 3 and test kits are not yet commercially available. Veterinarians and doctors should be aware of melioidosis not only as an agent of public interest but also in terms of a bioterrorist attack. The aim of this review is to describe the agent, its aetiology, the manifestation in a variety of animal species as well as to describe diagnostic procedures, typing techniques and countermeasures.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Development of Rapid Enzyme-Linked Immunosorbent Assays for Detection of Antibodies to Burkholderia pseudomallei

            Burkholderia pseudomallei, the causative agent of melioidosis, is an environmental bacillus found in northeast Thailand. The mortality rate of melioidosis is ∼40%. An indirect hemagglutination assay (IHA) is used as a reference serodiagnostic test; however, it has low specificity in areas where the background seropositivity of healthy people is high. To improve assay specificity and reduce the time for diagnosis, four rapid enzyme-linked immunosorbent assays (ELISAs) were developed using two purified polysaccharide antigens (O-polysaccharide [OPS] and 6-deoxyheptan capsular polysaccharide [CPS]) and two crude antigens (whole-cell [WC] antigen and culture filtrate [CF] antigen) of B. pseudomallei. The ELISAs were evaluated using serum samples from 141 culture-confirmed melioidosis patients from Thailand along with 188 healthy donors from Thailand and 90 healthy donors from the United States as controls. The areas under receiver operator characteristic curves (AUROCC) using Thai controls were high for the OPS-ELISA (0.91), CF-ELISA (0.91), and WC-ELISA (0.90), while those of CPS-ELISA (0.84) and IHA (0.72) were lower. AUROCC values using U.S. controls were comparable to those of the Thai controls for all ELISAs except IHA (0.93). Using a cutoff optical density (OD) of 0.87, the OPS-ELISA had a sensitivity of 71.6% and a specificity of 95.7% for Thai controls; for U.S. controls, specificity was 96.7%. An additional 120 serum samples from tuberculosis, scrub typhus, or leptospirosis patients were evaluated in all ELISAs and resulted in comparable or higher specificities than using Thai healthy donors. Our findings suggest that antigen-specific ELISAs, particularly the OPS-ELISA, may be useful for serodiagnosis of melioidosis in areas where it is endemic and nonendemic.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Melioidosis in Animals, Thailand, 2006–2010

              We retrospectively estimated the incidence of culture-proven melioidosis in animals in Thailand during 2006–2010. The highest incidence was in goats (1.63/100,000/year), followed by incidence in pigs and cattle. The estimated incidence of melioidosis in humans in a given region paralleled that of melioidosis in goats.
                Bookmark

                Author and article information

                Journal
                J Vet Med Sci
                J. Vet. Med. Sci
                JVMS
                The Journal of Veterinary Medical Science
                The Japanese Society of Veterinary Science
                0916-7250
                1347-7439
                29 January 2020
                March 2020
                : 82
                : 3
                : 325-332
                Affiliations
                [1) ]School of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
                [2) ]Animal Health Research Institute, Council of Agriculture, Executive Yuan, New Taipei City, 25158, Taiwan
                [3) ]Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
                [4) ]Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
                [5) ]General Research Service Center, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
                Author notes
                Article
                19-0072
                10.1292/jvms.19-0072
                7118472
                31996495
                7c69c423-e83b-49a1-a42f-860725593c3a
                ©2020 The Japanese Society of Veterinary Science

                This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/)

                History
                : 11 February 2019
                : 17 January 2020
                Categories
                Bacteriology
                Full Paper

                enzyme-linked immunosorbent assay (elisa),flagellin,melioidosis,outer membrane protein a,serology test

                Comments

                Comment on this article