10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Seasonal patterns of atmospheric mercury in tropical South America as inferred by a continuous total gaseous mercury record at Chacaltaya station (5240 m) in Bolivia

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract. High-quality atmospheric mercury (Hg) data are rare for South America, especially for its tropical region. As a consequence, mercury dynamics are still highly uncertain in this region. This is a significant deficiency, as South America appears to play a major role in the global budget of this toxic pollutant. To address this issue, we performed nearly 2 years (July 2014–February 2016) of continuous high-resolution total gaseous mercury (TGM) measurements at the Chacaltaya (CHC) mountain site in the Bolivian Andes, which is subject to a diverse mix of air masses coming predominantly from the Altiplano and the Amazon rainforest. For the first 11 months of measurements, we obtained a mean TGM concentration of 0.89±0.01 ng m−3, which is in good agreement with the sparse amount of data available from the continent. For the remaining 9 months, we obtained a significantly higher TGM concentration of 1.34±0.01 ng m−3, a difference which we tentatively attribute to the strong El Niño event of 2015–2016. Based on HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) back trajectories and clustering techniques, we show that lower mean TGM concentrations were linked to either westerly Altiplanic air masses or those originating from the lowlands to the southeast of CHC. Elevated TGM concentrations were related to northerly air masses of Amazonian or southerly air masses of Altiplanic origin, with the former possibly linked to artisanal and small-scale gold mining (ASGM), whereas the latter might be explained by volcanic activity. We observed a marked seasonal pattern, with low TGM concentrations in the dry season (austral winter), rising concentrations during the biomass burning (BB) season, and the highest concentrations at the beginning of the wet season (austral summer). With the help of simultaneously sampled equivalent black carbon (eBC) and carbon monoxide (CO) data, we use the clearly BB-influenced signal during the BB season (August to October) to derive a mean TGM / CO emission ratio of (2.3±0.6)×10-7 ppbvTGM ppbvCO-1, which could be used to constrain South American BB emissions. Through the link with CO2 measured in situ and remotely sensed solar-induced fluorescence (SIF) as proxies for vegetation activity, we detect signs of a vegetation sink effect in Amazonian air masses and derive a “best guess” TGM / CO2 uptake ratio of 0.058 ±0.017 (ng m−3)TGM ppmCO2-1. Finally, significantly higher Hg concentrations in western Altiplanic air masses during the wet season compared with the dry season point towards the modulation of atmospheric Hg by the eastern Pacific Ocean.

          Related collections

          Most cited references79

          • Record: found
          • Abstract: not found
          • Book: not found

          Modern Applied Statistics with S

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              New global observations of the terrestrial carbon cycle from GOSAT: Patterns of plant fluorescence with gross primary productivity

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Atmospheric Chemistry and Physics
                Atmos. Chem. Phys.
                Copernicus GmbH
                1680-7324
                2021
                March 05 2021
                : 21
                : 5
                : 3447-3472
                Article
                10.5194/acp-21-3447-2021
                7c6ddaeb-0960-45dc-ac10-f2dd4f2729ee
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article