32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Validation of suitable house keeping genes for hypoxia-cultured human chondrocytes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Hypoxic culturing of chondrocytes is gaining increasing interest in cartilage research. Culturing of chondrocytes under low oxygen tension has shown several advantages, among them increased synthesis of extracellular matrix and increased redifferentiation of dedifferentiated chondrocytes. Quantitative gene expression analyses such as quantitative real-time PCR (qRT-PCR) are powerful tools in the investigation of underlying mechanisms of cell behavior and are used routinely for differentiation and phenotype assays. However, the genes used for normalization in normoxic cell-cultures might not be suitable in the hypoxic environment. The objective of this study was to determine hypoxia-stable housekeeping genes (HKG) for quantitative real-time PCR (qRT-PCR) in human chondrocytes cultured in 21%, 5% and 1% oxygen by geNorm and NormFinder analyses.

          Results

          The chondrocytic response to the hypoxic challange was validated by a significant increase in expression of the hypoxia-inducible gene ankyrin repeat 37 as well as SOX9 in hypoxia. When cultured on the 3-dimentional (3D) scaffold TATA-binding protein (TBP) exhibited the highest expression stability with NormFinder while Ribosomal protein L13a (RPL13A) and beta2-microglobulin (B2M) were the most stable using geNorm analysis. In monolayer RPL13A were the most stable gene using NormFinder, while geNorm assessed RPL13A and human RNA polymerase II (RPII) as most stable. When examining the combination of (3D) culturing and monolayer RPL13A and B2M showed the highest expression stability from geNorm analysis while RPL13A also showed the highest expression stability using NormFinder. Often used HKG such as beta actin (ACTB) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were the most unstable genes investigated in all comparisons. The pairwise variations for the two most stable HKG in each group were all below the cut-off value of 0.15, suggesting that the two most stable HKG from geNorm analysis would be sufficient for qRT-PCR.

          Conclusion

          All data combined we recommend RPL13A, B2M and RPII as the best choice for qRT-PCR analyses when comparing normoxic and hypoxic cultured human chondrocytes although other genes might also be suitable. However, the matching of HKG to target genes by means of a thorough investigation of the stability in each study would always be preferable.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Housekeeping genes as internal standards: use and limits.

          Quantitative studies are commonly realised in the biomedical research to compare RNA expression in different experimental or clinical conditions. These quantifications are performed through their comparison to the expression of the housekeeping gene transcripts like glyceraldehyde-3-phosphate dehydrogenase (G3PDH), albumin, actins, tubulins, cyclophilin, hypoxantine phsophoribosyltransferase (HRPT), L32. 28S, and 18S rRNAs are also used as internal standards. In this paper, it is recalled that the commonly used internal standards can quantitatively vary in response to various factors. Possible variations are illustrated using three experimental examples. Preferred types of internal standards are then proposed for each of these samples and thereafter the general procedure concerning the choice of an internal standard and the way to manage its uses are discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Validation of housekeeping genes for normalizing RNA expression in real-time PCR.

            Analysis of RNA expression using techniques like real-time PCR has traditionally used reference or housekeeping genes to control for error between samples. This practice is being questioned as it becomes increasingly clear that some housekeeping genes may vary considerably in certain biological samples. We used real-time reverse transcription PCR (RT-PCR) to assess the levels of 13 housekeeping genes expressed in peripheral blood mononuclear cell culture and whole blood from healthy individuals and those with tuberculosis. Housekeeping genes were selected from conventionally used ones and from genes reported to be invariant in human T cell culture. None of the commonly used housekeeping genes [e.g., glyceraldehyde-phosphate-dehydrogenase (GAPDH)] were found to be suitable as internal references, as they were highly variable (>30-fold maximal variability). Furthermore, genes previously found to be invariant in human T cell culture also showed large variation in RNA expression (>34-fold maximal variability). Genes that were invariant in blood were highly variable in peripheral blood mononuclear cell culture. Our data show that RNA specifying human acidic ribosomal protein was the most suitable housekeeping gene for normalizing mRNA levels in human pulmonary tuberculosis. Validations of housekeeping genes are highly specific for a particular experimental model and are a crucial component in assessing any new model.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Quantitative real-time reverse transcription polymerase chain reaction: normalization to rRNA or single housekeeping genes is inappropriate for human tissue biopsies.

              Careful normalization is essential when using quantitative reverse transcription polymerase chain reaction assays to compare mRNA levels between biopsies from different individuals or cells undergoing different treatment. Generally this involves the use of internal controls, such as mRNA specified by a housekeeping gene, ribosomal RNA (rRNA), or accurately quantitated total RNA. The aim of this study was to compare these methods and determine which one can provide the most accurate and biologically relevant quantitative results. Our results show significant variation in the expression levels of 10 commonly used housekeeping genes and 18S rRNA, both between individuals and between biopsies taken from the same patient. Furthermore, in 23 breast cancers samples mRNA and protein levels of a regulated gene, vascular endothelial growth factor (VEGF), correlated only when normalized to total RNA, as did microvessel density. Finally, mRNA levels of VEGF and the most popular housekeeping gene, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), were significantly correlated in the colon. Our results suggest that the use of internal standards comprising single housekeeping genes or rRNA is inappropriate for studies involving tissue biopsies.
                Bookmark

                Author and article information

                Journal
                BMC Mol Biol
                BMC Molecular Biology
                BioMed Central
                1471-2199
                2009
                9 October 2009
                : 10
                : 94
                Affiliations
                [1 ]Orthopaedic Research Laboratory, Aarhus University Hospital, Aarhus, Denmark
                [2 ]Sports Trauma Clinic, Aarhus University Hospital, Aarhus, Denmark
                Article
                1471-2199-10-94
                10.1186/1471-2199-10-94
                2764705
                19818117
                7c88f2b2-43fb-4b3b-ac57-5c9f57844906
                Copyright © 2009 Foldager et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 31 March 2009
                : 9 October 2009
                Categories
                Research Article

                Molecular biology
                Molecular biology

                Comments

                Comment on this article