15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Flaxseed: its bioactive components and their cardiovascular benefits

      1 , 2 , 3 , 4 , 2 , 1 , 2 , 3
      American Journal of Physiology-Heart and Circulatory Physiology
      American Physiological Society

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cardiovascular disease remains the leading cause of mortality and morbidity worldwide. The inclusion of functional foods and natural health products in the diet are gaining increasing recognition as integral components of lifestyle changes in the fight against cardiovascular disease. Several preclinical and clinical studies have shown the beneficial cardiovascular effects of dietary supplementation with flaxseed. The cardiovascular effects of dietary flaxseed have included an antihypertensive action, antiatherogenic effects, a lowering of cholesterol, an anti-inflammatory action, and an inhibition of arrhythmias. Its enrichment in the ω-3 fatty acid α-linolenic acid and the antioxidant lignan secoisolariciresinol diglucoside as well as its high fiber content have been implicated primarily in these beneficial cardiovascular actions. Although not as well recognized, flaxseed is also composed of other potential bioactive compounds such as proteins, cyclolinopeptides, and cyanogenic glycosides, which may also produce biological actions. These compounds could also be responsible for the cardiovascular effects of flaxseed. This article will not only summarize the cardiovascular effects of dietary supplementation with flaxseed but also review its bioactive compounds in terms of their properties, biological effects, and proposed mechanisms of action. It will also discuss promising research directions for the future to identify additional health-related benefits of dietary flaxseed.

          Related collections

          Most cited references124

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The role of short chain fatty acids in appetite regulation and energy homeostasis

          Over the last 20 years there has been an increasing interest in the influence of the gastrointestinal tract on appetite regulation. Much of the focus has been on the neuronal and hormonal relationship between the gastrointestinal tract and the brain. There is now mounting evidence that the colonic microbiota and their metabolic activity have a significant role in energy homeostasis. The supply of substrate to the colonic microbiota has a major impact on the microbial population and the metabolites they produce, particularly short chain fatty acids (SCFAs). SCFAs are produced when non-digestible carbohydrates, namely dietary fibres and resistant starch, undergo fermentation by the colonic microbiota. Both the consumption of fermentable carbohydrates and the administration of SCFAs have been reported to result in a wide range of health benefits including improvements in body composition, glucose homeostasis, blood lipid profiles and reduced body weight and colon cancer risk. However, published studies tend to report the effects that fermentable carbohydrates and SCFAs have on specific tissues and metabolic processes, and fail to explain how these local effects translate into systemic effects and the mitigation of disease risk. Moreover, studies tend to investigate SCFAs collectively and neglect to report the effects associated with individual SCFAs. Here, we bring together the recent evidence and suggest an overarching model for the effects of SCFAs on one of their beneficial aspects: appetite regulation and energy homeostasis.
            • Record: found
            • Abstract: found
            • Article: not found

            Nitric oxide synthase modulates angiogenesis in response to tissue ischemia.

            We tested the hypothesis that endothelial nitric oxide synthase (eNOS) modulates angiogenesis in two animal models in which therapeutic angiogenesis has been characterized as a compensatory response to tissue ischemia. We first administered L-arginine, previously shown to augment endogenous production of NO, to normal rabbits with operatively induced hindlimb ischemia. Angiogenesis in the ischemic hindlimb was significantly improved by dietary supplementation with L-arginine, compared to placebo-treated controls; angiographically evident vascularity in the ischemic limb, hemodynamic indices of limb perfusion, capillary density, and vasomotor reactivity in the collateral vessel-dependent ischemic limb were all improved by oral L-arginine supplementation. A murine model of operatively induced hindlimb ischemia was used to investigate the impact of targeted disruption of the gene encoding for ENOS on angiogenesis. Angiogenesis in the ischemic hindlimb was significantly impaired in eNOS-/- mice versus wild-type controls evaluated by either laser Doppler flow analysis or capillary density measurement. Impaired angiogenesis in eNOS-/- mice was not improved by administration of vascular endothelial growth factor (VEGF), suggesting that eNOS acts downstream from VEGF. Thus, (a) eNOS is a downstream mediator for in vivo angiogenesis, and (b) promoting eNOS activity by L-arginine supplementation accelerates in vivo angiogenesis. These findings suggest that defective endothelial NO synthesis may limit angiogenesis in patients with endothelial dysfunction related to atherosclerosis, and that oral L-arginine supplementation constitutes a potential therapeutic strategy for accelerating angiogenesis in patients with advanced vascular obstruction.
              • Record: found
              • Abstract: not found
              • Article: not found

              EICOSAPENTAENOIC ACID AND PREVENTION OF THROMBOSIS AND ATHEROSCLEROSIS?

              J Dyerberg (1978)

                Author and article information

                Journal
                American Journal of Physiology-Heart and Circulatory Physiology
                American Journal of Physiology-Heart and Circulatory Physiology
                American Physiological Society
                0363-6135
                1522-1539
                February 01 2018
                February 01 2018
                : 314
                : 2
                : H146-H159
                Affiliations
                [1 ]Department of Physiology and Pathophysiology, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
                [2 ]Canadian Centre for Agri-food Research in Health and Medicine, Winnipeg, Manitoba, Canada
                [3 ]Institute of Cardiovascular Sciences, St. Boniface Hospital, Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
                [4 ]Agriculture and Agri-food Canada, Winnipeg, Manitoba, Canada
                Article
                10.1152/ajpheart.00400.2017
                29101172
                7c8b009b-d229-4bb4-a148-0ffe2bafa511
                © 2018
                History

                Comments

                Comment on this article

                Related Documents Log