69
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nicotiana Small RNA Sequences Support a Host Genome Origin of Cucumber Mosaic Virus Satellite RNA

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Satellite RNAs (satRNAs) are small noncoding subviral RNA pathogens in plants that depend on helper viruses for replication and spread. Despite many decades of research, the origin of satRNAs remains unknown. In this study we show that a β-glucuronidase (GUS) transgene fused with a Cucumber mosaic virus (CMV) Y satellite RNA (Y-Sat) sequence (35S-GUS:Sat) was transcriptionally repressed in N. tabacum in comparison to a 35S-GUS transgene that did not contain the Y-Sat sequence. This repression was not due to DNA methylation at the 35S promoter, but was associated with specific DNA methylation at the Y-Sat sequence. Both northern blot hybridization and small RNA deep sequencing detected 24-nt siRNAs in wild-type Nicotiana plants with sequence homology to Y-Sat, suggesting that the N. tabacum genome contains Y-Sat-like sequences that give rise to 24-nt sRNAs capable of guiding RNA-directed DNA methylation (RdDM) to the Y-Sat sequence in the 35S-GUS:Sat transgene. Consistent with this, Southern blot hybridization detected multiple DNA bands in Nicotiana plants that had sequence homology to Y-Sat, suggesting that Y-Sat-like sequences exist in the Nicotiana genome as repetitive DNA, a DNA feature associated with 24-nt sRNAs. Our results point to a host genome origin for CMV satRNAs, and suggest novel approach of using small RNA sequences for finding the origin of other satRNAs.

          Author Summary

          Satellite RNAs (satRNAs) are small RNA pathogens in plants that depend on associated viruses for replication and spread. While much is known about the replication and pathogenicity of satRNAs, their origin remains a mystery. We report evidence for a host genome origin of the Cucumber mosaic virus (CMV) satRNA. We show that only the CMV Y-satRNA (Y-Sat) sequence region of a fusion transgene was methylated in Nicotiana tabacum, indicating that the Y-Sat sequence is subject to 24-nt small RNA (sRNA)-directed DNA methylation. 24-nt sRNAs as well as multiple genomic DNA fragments, with sequence homology to Y-Sat, were detected in Nicotiana plants, suggesting that the Nicotiana genome contains Y-Sat-like repetitive DNA sequences, a genomic feature associated with 24-nt sRNAs. Our results suggest that CMV satRNAs have originated from repetitive DNA in the Nicotiana plant genome, and highlight the possibility that small RNA sequences can be used to identify the origin of other satRNAs.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Mechanisms of gene silencing by double-stranded RNA.

          Double-stranded RNA (dsRNA) is an important regulator of gene expression in many eukaryotes. It triggers different types of gene silencing that are collectively referred to as RNA silencing or RNA interference. A key step in known silencing pathways is the processing of dsRNAs into short RNA duplexes of characteristic size and structure. These short dsRNAs guide RNA silencing by specific and distinct mechanisms. Many components of the RNA silencing machinery still need to be identified and characterized, but a more complete understanding of the process is imminent.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            RNA silencing in plants.

            There are at least three RNA silencing pathways for silencing specific genes in plants. In these pathways, silencing signals can be amplified and transmitted between cells, and may even be self-regulated by feedback mechanisms. Diverse biological roles of these pathways have been established, including defence against viruses, regulation of gene expression and the condensation of chromatin into heterochromatin. We are now in a good position to investigate the full extent of this functional diversity in genetic and epigenetic mechanisms of genome control.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A versatile binary vector system with a T-DNA organisational structure conducive to efficient integration of cloned DNA into the plant genome.

              A. Gleave (1992)
              A versatile gene expression cartridge and binary vector system was constructed for use in Agrobacterium-mediated plant transformation. The expression cartridge of the primary cloning vector, pART7, comprises of cauliflower mosaic virus Cabb B-JI isolate 35S promoter, a multiple cloning site and the transcriptional termination region of the octopine synthase gene. The entire cartridge can be removed from pART7 as a Not I fragment and introduced directly into the binary vector, pART27, recombinants being selected by blue/white screening for beta-galactosidase. pART27 carries the RK2 minimal replicon for maintenance in Agrobacterium, the ColE1 origin of replication for high-copy maintenance in Escherichia coli and the Tn7 spectinomycin/streptomycin resistance gene as a bacterial selectable marker. The organisational structure of the T-DNA of pART27 has been constructed taking into account the right to left border, 5' to 3' model of T-DNA transfer. The T-DNA carries the chimaeric kanamycin resistance gene (nopaline synthase promoter-neomycin phosphotransferase-nopaline synthase terminator) distal to the right border relative to the lacZ' region. Utilisation of these vectors in Agrobacterium-mediated transformation of tobacco demonstrated efficient T-DNA transfer to the plant genome.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                January 2015
                8 January 2015
                : 11
                : 1
                : e1004906
                Affiliations
                [1 ]CSIRO Plant Industry, Canberra, Australian Capital Territory, Australia
                [2 ]School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, Australia
                [3 ]State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
                University of California Riverside, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: MBW HSG RZ ESD. Performed the experiments: KZ JHZ NAS US YYF MBW. Analyzed the data: KZ JHZ NAS US YYF MBW HSG. Contributed reagents/materials/analysis tools: MBW HSG. Wrote the paper: MBW HSG ESD RZ JHZ.

                [¤]

                Current address: Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan

                Article
                PGENETICS-D-14-01666
                10.1371/journal.pgen.1004906
                4287446
                25568943
                7c8fc52f-bd24-47b8-99f2-9df485173b2c
                Copyright @ 2015

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 20 June 2014
                : 20 November 2014
                Page count
                Pages: 13
                Funding
                This work was supported by an Australian Research Council Future Fellowship (FT0991956; MBW) and grants from the Ministry of Science and Technology (2014CB138402) and the Natural Science Foundation of China (No. 91219301; HSG). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Custom metadata
                The authors confirm that all data underlying the findings are fully available without restriction. All data are within the paper except the raw small RNA sequencing data which are available from NCBI under accession number GSE63586.

                Genetics
                Genetics

                Comments

                Comment on this article