33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Prolonged mechanical unloading affects cardiomyocyte excitation-contraction coupling, transverse-tubule structure, and the cell surface

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Prolonged mechanical unloading (UN) of the heart is associated with detrimental changes to the structure and function of cardiomyocytes. The mechanisms underlying these changes are unknown. In this study, we report the influence of UN on excitation-contraction coupling, Ca 2+-induced Ca 2+ release (CICR) in particular, and transverse (t)-tubule structure. UN was induced in male Lewis rat hearts by heterotopic abdominal heart transplantation. Left ventricular cardiomyocytes were isolated from the transplanted hearts after 4 wk and studied using whole-cell patch clamping, confocal microscopy, and scanning ion conductance microscopy (SICM). Recipient hearts were used as control (C). UN reduced the volume of cardiomyocytes by 56.5% compared with C (UN, n=90; C, n=59; P<0.001). The variance of time-to-peak of the Ca 2+ transients was significantly increased in unloaded cardiomyocytes (UN 227.4±24.9 ms 2, n=42 vs. C 157.8±18.0 ms 2, n=40; P<0.05). UN did not alter the action potential morphology or whole-cell L-type Ca 2+ current compared with C, but caused a significantly higher Ca 2+ spark frequency (UN 3.718±0.85 events/100 μm/s, n=47 vs. C 0.908±0.186 events/100 μm/s, n=45; P<0.05). Confocal studies showed irregular distribution of the t tubules (power of the normal t-tubule frequency: UN 8.13±1.12×10 5, n=57 vs. C 20.60± 3.174×10 5, n=56; P<0.001) and SICM studies revealed a profound disruption to the openings of the t tubules and the cell surface in unloaded cardiomyocytes. We show that UN leads to a functional uncoupling of the CICR process and identify disruption of the t-tubule-sarcoplasmic reticulum interaction as a possible mechanism.—Ibrahim, M., Al Masri, A., Navaratnarajah, M., Siedlecka, U., Soppa, G. K., Moshkov, A., Abou Al-Saud, S., Gorelik, J., Yacoub, M. H., Terracciano, C. M. N. Prolonged mechanical unloading affects cardiomyocyte excitation-contraction coupling, transverse-tubule structure, and the cell surface.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Loss of T-tubules and other changes to surface topography in ventricular myocytes from failing human and rat heart.

          T-tubular invaginations of the sarcolemma of ventricular cardiomyocytes contain junctional structures functionally coupling L-type calcium channels to the sarcoplasmic reticulum calcium-release channels (the ryanodine receptors), and therefore their configuration controls the gain of calcium-induced calcium release (CICR). Studies primarily in rodent myocardium have shown the importance of T-tubular structures for calcium transient kinetics and have linked T-tubule disruption to delayed CICR. However, there is disagreement as to the nature of T-tubule changes in human heart failure. We studied isolated ventricular myocytes from patients with ischemic heart disease, idiopathic dilated cardiomyopathy, and hypertrophic obstructive cardiomyopathy and determined T-tubule structure with either the fluorescent membrane dye di-8-ANNEPs or the scanning ion conductance microscope (SICM). The SICM uses a scanning pipette to produce a topographic representation of the surface of the live cell by a non-optical method. We have also compared ventricular myocytes from a rat model of chronic heart failure after myocardial infarction. T-tubule loss, shown by both ANNEPs staining and SICM imaging, was pronounced in human myocytes from all etiologies of disease. SICM imaging showed additional changes in surface structure, with flattening and loss of Z-groove definition common to all etiologies. Rat myocytes from the chronic heart failure model also showed both T-tubule and Z-groove loss, as well as increased spark frequency and greater spark amplitude. This study confirms the loss of T-tubules as part of the phenotypic change in the failing human myocyte, but it also shows that this is part of a wider spectrum of alterations in surface morphology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nanoscale live-cell imaging using hopping probe ion conductance microscopy.

            We describe hopping mode scanning ion conductance microscopy that allows noncontact imaging of the complex three-dimensional surfaces of live cells with resolution better than 20 nm. We tested the effectiveness of this technique by imaging networks of cultured rat hippocampal neurons and mechanosensory stereocilia of mouse cochlear hair cells. The technique allowed examination of nanoscale phenomena on the surface of live cells under physiological conditions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Left ventricular assist device and drug therapy for the reversal of heart failure.

              In patients with severe heart failure, prolonged unloading of the myocardium with the use of a left ventricular assist device has been reported to lead to myocardial recovery in small numbers of patients for varying periods of time. Increasing the frequency and durability of myocardial recovery could reduce or postpone the need for subsequent heart transplantation. We enrolled 15 patients with severe heart failure due to nonischemic cardiomyopathy and with no histologic evidence of active myocarditis. All had markedly reduced cardiac output and were receiving inotropes. The patients underwent implantation of left ventricular assist devices and were treated with lisinopril, carvedilol, spironolactone, and losartan to enhance reverse remodeling. Once regression of left ventricular enlargement had been achieved, the beta2-adrenergic-receptor agonist clenbuterol was administered to prevent myocardial atrophy. Eleven of the 15 patients had sufficient myocardial recovery to undergo explantation of the left ventricular assist device a mean (+/-SD) of 320+/-186 days after implantation of the device. One patient died of intractable arrhythmias 24 hours after explantation; another died of carcinoma of the lung 27 months after explantation. The cumulative rate of freedom from recurrent heart failure among the surviving patients was 100% and 88.9% 1 and 4 years after explantation, respectively. The quality of life as assessed by the Minnesota Living with Heart Failure Questionnaire score at 3 years was nearly normal. Fifty-nine months after explantation, the mean left ventricular ejection fraction was 64+/-12%, the mean left ventricular end-diastolic diameter was 59.4+/-12.1 mm, the mean left ventricular end-systolic diameter was 42.5+/-13.2 mm, and the mean maximal oxygen uptake with exercise was 26.3+/-6.0 ml per kilogram of body weight per minute. In this single-center study, we found that sustained reversal of severe heart failure secondary to nonischemic cardiomyopathy could be achieved in selected patients with the use of a left ventricular assist device and a specific pharmacologic regimen. Copyright 2006 Massachusetts Medical Society.
                Bookmark

                Author and article information

                Journal
                FASEB J
                The FASEB Journal
                The Federation of American Societies for Experimental Biology
                0892-6638
                1530-6860
                September 2010
                1 September 2010
                : 24
                : 9
                : 3321-3329
                Affiliations
                [* ]Imperial College London, Harefield Heart Science Centre and Cardiovascular Sciences, London, UK; and
                []King Saud University College of Medicine, King Fahad Cardiac Center, Riyadh, Saudi Arabia
                Author notes
                [1]

                These authors contributed equally to this work.

                [2]

                Correspondence: Harefield Heart Science Centre, Harefield Hospital, Harefield, Middlesex, UB9 6JH UK. E-mail: c.terracciano@ 123456imperial.ac.uk

                Article
                10-156638
                10.1096/fj.10-156638
                2923356
                20430793
                7c971a68-7b64-42b6-9818-e9919ae23dd9
                © 2010 The Author(s)

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0/us/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 25 February 2010
                : 15 April 2010
                Categories
                Research Communications

                Molecular biology
                scanning ion conductance microscope,ca2+-induced ca2+ release,confocal microscope

                Comments

                Comment on this article