19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Analysis of the transcriptional responses in inflorescence buds of Jatropha curcas exposed to cytokinin treatment

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Jatropha curcas L. is a potential biofuel plant. Application of exogenous cytokinin (6-benzyladenine, BA) on its inflorescence buds can significantly increase the number of female flowers, thereby improving seed yield. To investigate which genes and signal pathways are involved in the response to cytokinin in J. curcas inflorescence buds, we monitored transcriptional activity in inflorescences at 0, 3, 12, 24, and 48 h after BA treatment using a microarray.

          Results

          We detected 5,555 differentially expressed transcripts over the course of the experiment, which could be grouped into 12 distinct temporal expression patterns. We also identified 31 and 131 transcripts in J. curcas whose homologs in model plants function in flowering and phytohormonal signaling pathways, respectively. According to the transcriptional analysis of genes involved in flower development, we hypothesized that BA treatment delays floral organ formation by inhibiting the transcription of the A, B and E classes of floral organ-identity genes, which would allow more time to generate more floral primordia in inflorescence meristems, thereby enhancing inflorescence branching and significantly increasing flower number per inflorescence. BA treatment might also play an important role in maintaining the flowering signals by activating the transcription of GIGANTEA ( GI) and inactivating the transcription of CONSTITUTIVE PHOTOMORPHOGENIC 1 ( COP1) and TERMINAL FLOWER 1b (TFL1b). In addition, exogenous cytokinin treatment could regulate the expression of genes involved in the metabolism and signaling of other phytohormones, indicating that cytokinin and other phytohormones jointly regulate flower development in J. curcas inflorescence buds.

          Conclusions

          Our study provides a framework to better understand the molecular mechanisms underlying changes in flowering traits in response to cytokinin treatment in J. curcas inflorescence buds. The results provide valuable information related to the mechanisms of cross-talk among multiple phytohormone signaling pathways in woody plants.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s12870-014-0318-z) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          Cytokinin oxidase regulates rice grain production.

          Most agriculturally important traits are regulated by genes known as quantitative trait loci (QTLs) derived from natural allelic variations. We here show that a QTL that increases grain productivity in rice, Gn1a, is a gene for cytokinin oxidase/dehydrogenase (OsCKX2), an enzyme that degrades the phytohormone cytokinin. Reduced expression of OsCKX2 causes cytokinin accumulation in inflorescence meristems and increases the number of reproductive organs, resulting in enhanced grain yield. QTL pyramiding to combine loci for grain number and plant height in the same genetic background generated lines exhibiting both beneficial traits. These results provide a strategy for tailormade crop improvement.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cytokinins: activity, biosynthesis, and translocation.

            Cytokinins (CKs) play a crucial role in various phases of plant growth and development, but the basic molecular mechanisms of their biosynthesis and signal transduction only recently became clear. The progress was achieved by identifying a series of key genes encoding enzymes and proteins controlling critical steps in biosynthesis, translocation, and signaling. Basic schemes for CK homeostasis and root/shoot communication at the whole-plant level can now be devised. This review summarizes recent findings on the relationship between CK structural variation and activity, distinct features in CK biosynthesis between higher plants and Agrobacterium infected plants, CK translocation at whole-plant and cellular levels, and CKs as signaling molecules for nutrient status via root-shoot communication.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Glucosinolate metabolites required for an Arabidopsis innate immune response.

              The perception of pathogen or microbe-associated molecular pattern molecules by plants triggers a basal defense response analogous to animal innate immunity and is defined partly by the deposition of the glucan polymer callose at the cell wall at the site of pathogen contact. Transcriptional and metabolic profiling in Arabidopsis mutants, coupled with the monitoring of pathogen-triggered callose deposition, have identified major roles in pathogen response for the plant hormone ethylene and the secondary metabolite 4-methoxy-indol-3-ylmethylglucosinolate. Two genes, PEN2 and PEN3, are also necessary for resistance to pathogens and are required for both callose deposition and glucosinolate activation, suggesting that the pathogen-triggered callose response is required for resistance to microbial pathogens. Our study shows that well-studied plant metabolites, previously identified as important in avoiding damage by herbivores, are also required as a component of the plant defense response against microbial pathogens.
                Bookmark

                Author and article information

                Contributors
                chenms@xtbg.org.cn
                pbz@xtbg.org.cn
                wanggj@xtbg.org.cn
                nijun.sun@gmail.com
                niulongjian@126.com
                zfxu@xtbg.ac.cn
                Journal
                BMC Plant Biol
                BMC Plant Biol
                BMC Plant Biology
                BioMed Central (London )
                1471-2229
                30 November 2014
                30 November 2014
                2014
                : 14
                : 1
                : 318
                Affiliations
                [ ]Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303 China
                [ ]University of Chinese Academy of Sciences, Beijing, 100049 China
                [ ]School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 China
                Article
                318
                10.1186/s12870-014-0318-z
                4272566
                25433671
                7c9b030e-74cd-4e9c-a4c7-7e1022341100
                © Chen et al.; licensee BioMed Central Ltd. 2014

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 21 June 2014
                : 6 November 2014
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2014

                Plant science & Botany
                cytokinin,flowering,physic nut,phytohormone,woody plant,microarray
                Plant science & Botany
                cytokinin, flowering, physic nut, phytohormone, woody plant, microarray

                Comments

                Comment on this article