128
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Gigantism and comparative life-history parameters of tyrannosaurid dinosaurs.

      Nature
      Biological Evolution, Body Constitution, Dinosaurs, anatomy & histology, growth & development, Fossils, Gigantism, physiopathology, Longevity, physiology

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          How evolutionary changes in body size are brought about by variance in developmental timing and/or growth rates (also known as heterochrony) is a topic of considerable interest in evolutionary biology. In particular, extreme size change leading to gigantism occurred within the dinosaurs on multiple occasions. Whether this change was brought about by accelerated growth, delayed maturity or a combination of both processes is unknown. A better understanding of relationships between non-avian dinosaur groups and the newfound capacity to reconstruct their growth curves make it possible to address these questions quantitatively. Here we study growth patterns within the Tyrannosauridae, the best known group of large carnivorous dinosaurs, and determine the developmental means by which Tyrannosaurus rex, weighing 5,000 kg and more, grew to be one of the most enormous terrestrial carnivorous animals ever. T. rex had a maximal growth rate of 2.1 kg d(-1), reached skeletal maturity in two decades and lived for up to 28 years. T. rex's great stature was primarily attained by accelerating growth rates beyond that of its closest relatives.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          Pelvic and hindlimb musculature of Tyrannosaurus rex (Dinosauria: Theropoda).

          In this article, we develop a new reconstruction of the pelvic and hindlimb muscles of the large theropod dinosaur Tyrannosaurus rex. Our new reconstruction relies primarily on direct examination of both extant and fossil turtles, lepidosaurs, and archosaurs. These observations are placed into a phylogenetic context and data from extant taxa are used to constrain inferences concerning the soft-tissue structures in T. rex. Using this extant phylogenetic bracket, we are able to offer well-supported inferences concerning most of the hindlimb musculature in this taxon. We also refrain from making any inferences for certain muscles where the resulting optimizations are ambiguous. This reconstruction differs from several previous attempts and we evaluate these discrepancies. In addition to providing a new and more detailed understanding of the hindlimb morphology of T. rex--the largest known terrestrial biped--this reconstruction also helps to clarify the sequence of character-state change along the line to extant birds. Copyright 2002 Wiley-Liss, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dinosaurian growth patterns and rapid avian growth rates.

            Did dinosaurs grow in a manner similar to extant reptiles, mammals or birds, or were they unique? Are rapid avian growth rates an innovation unique to birds, or were they inherited from dinosaurian precursors? We quantified growth rates for a group of dinosaurs spanning the phylogenetic and size diversity for the clade and used regression analysis to characterize the results. Here we show that dinosaurs exhibited sigmoidal growth curves similar to those of other vertebrates, but had unique growth rates with respect to body mass. All dinosaurs grew at accelerated rates relative to the primitive condition seen in extant reptiles. Small dinosaurs grew at moderately rapid rates, similar to those of marsupials, but large species attained rates comparable to those of eutherian mammals and precocial birds. Growth in giant sauropods was similar to that of whales of comparable size. Non-avian dinosaurs did not attain rates like those of altricial birds. Avian growth rates were attained in a stepwise fashion after birds diverged from theropod ancestors in the Jurassic period.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Long-bone circumference and weight in mammals, birds and dinosaurs

                Bookmark

                Author and article information

                Journal
                15306807
                10.1038/nature02699

                Chemistry
                Biological Evolution,Body Constitution,Dinosaurs,anatomy & histology,growth & development,Fossils,Gigantism,physiopathology,Longevity,physiology

                Comments

                Comment on this article