15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Physiology and pathophysiology of bone remodeling.

      Clinical chemistry
      Animals, Bone Remodeling, physiology, Bone and Bones, metabolism, physiopathology, Humans, Hyperparathyroidism, pathology, Hyperthyroidism, Osteitis Deformans, Osteopetrosis, Osteoporosis

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The skeleton is a metabolically active organ that undergoes continuous remodeling throughout life. This remodeling is necessary both to maintain the structural integrity of the skeleton and to subserve its metabolic functions as a storehouse of calcium and phosphorus. These dual functions often come into conflict under conditions of changing mechanical forces or metabolic and nutritional stress. The bone remodeling cycle involves a complex series of sequential steps that are highly regulated. The "activation" phase of remodeling is dependent on the effects of local and systemic factors on mesenchymal cells of the osteoblast lineage. These cells interact with hematopoietic precursors to form osteoclasts in the "resorption" phase. Subsequently, there is a "reversal" phase during which mononuclear cells are present on the bone surface. They may complete the resorption process and produce the signals that initiate formation. Finally, successive waves of mesenchymal cells differentiate into functional osteoblasts, which lay down matrix in the "formation" phase. The effects of calcium-regulating hormones on this remodeling cycle subserve the metabolic functions of the skeleton. Other systemic hormones control overall skeletal growth. The responses to changes in mechanical force and repair of microfractures, as well as the maintenance of the remodeling cycle, are determined locally by cytokines, prostaglandins, and growth factors. Interactions between systemic and local factors are important in the pathogenesis of osteoporosis as well as the skeletal changes in hyperparathyroidism and hyperthyroidism. Local factors are implicated in the pathogenesis of the skeletal changes associated with immobilization, inflammation, and Paget disease of bone.

          Related collections

          Author and article information

          Comments

          Comment on this article