11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Impurity Location-Dependent Relaxation Dynamics of Cu:CdS Quantum Dots

      brief-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Various types of 2% Cu-incorporated CdS (Cu:CdS) quantum dots (QDs) with very similar sizes have been prepared via a water soluble colloidal method. The locations of Cu impurities in CdS host nanocrystals have been controlled by adopting three different synthetic ways of doping, exchange, and adsorption to understand the impurity location-dependent relaxation dynamics of charge carriers. The oxidation state of incorporated Cu impurities has been found to be +1 and the band-gap energy of Cu:CdS QDs decreases as Cu 2S forms at the surfaces of CdS QDs. Broad and red-shifted emission with a large Stokes shift has been observed for Cu:CdS QDs as newly produced Cu-related defects become luminescent centers. The energetically favored hole trapping of thiol molecules, as well as the local environment, inhibits the radiative recombination processes of Cu:CdS QDs, thus resulting in low photoluminescence. Upon excitation, an electron is promoted to the conduction band, leaving a hole on the valence band. The hole is transferred to the Cu + d-state, changing Cu + into Cu 2+, which then participates in radiative recombination with an electron. Electrons in the conduction band are ensnared into shallow-trap sites within 52 ns. The electrons can be further captured on the time scale of 260 ns into deep-trap sites, where electrons recombine with holes in 820 ns. Our in-depth analysis of carrier relaxation has shown that the possibilities of both nonradiative recombination and energy transfer to Cu impurities become high when Cu ions are located at the surface of CdS QDs.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s11671-017-1832-3) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          An alternative of CdSe nanocrystal emitters: pure and tunable impurity emissions in ZnSe nanocrystals.

          The concept, decoupling doping from nucleation and/or growth, allows us to dope nearly all nanocrystals in a given sample which is indicated by complete quenching of the host emission and bright emission from the dopants at characteristic wavelengths tunable in most parts of the visible window using a ZnSe host. In an extreme case, ZnSe coated MnSe nanocrystals (MnSe:ZnSe) emit similarly as commonly known doped nanocrystals. In comparison with CdSe nanocrystals, these alternative emitters not only are intrinsically less toxic but also show some unexpected and expected advantages: stable against thermal and environmental changes, zero reabsorption, and no Forster energy transfer. In addition to their applications to replace CdSe based nanocrystal emitters, the unique structure and properties of the doped nanocrystals are of interest for studying fundamental issues in the field.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Efficient and color-tunable Mn-doped ZnSe nanocrystal emitters: control of optical performance via greener synthetic chemistry.

            Formation of Mn-doped ZnSe quantum dots (Mn:ZnSe d-dots) using nucleation-doping strategy was studied systematically and optimized through greener approaches. The resulting d-dots were with high ( approximately 50%) photoluminescence (PL) quantum yield (QY), which was achieved by the controlled formation of small-sized MnSe nanoclusters as the core and a diffused interface between the nanocluster core and the ZnSe overcoating layers. Synthesis of the d-dots under high temperatures (240-300 degrees C) was achieved by varying the structure of the metal carboxylate precursors, concentration of the inhibitors, free fatty acid, and concentration of the activation reagents, fatty amines. Highly emissive d-dots synthesized under desired conditions were found to be extremely stable upon thermal treatment up to the boiling point of the solvent (about 300 degrees C), which was quantitatively studied using in situ measurements. The PL peak of the d-dots was controllably tuned in a surprisingly large optical window, from 565 to 610 nm. These highly emissive and stable d-dots possess characteristics of practical emissive materials, especially for applications requiring high power, high concentration of emitters, and under tough conditions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Luminescent Colloidal Semiconductor Nanocrystals Containing Copper: Synthesis, Photophysics, and Applications.

              Copper-doped semiconductors are classic phosphor materials that have been used in a variety of applications for many decades. Colloidal copper-doped semiconductor nanocrystals have recently attracted a great deal of interest because they combine the solution processability and spectral tunability of colloidal nanocrystals with the unique photoluminescence properties of copper-doped semiconductor phosphors. Although ternary and quaternary semiconductors containing copper, such as CuInS2 and Cu2ZnSnS4, have been studied primarily in the context of their photovoltaic applications, when synthesized as colloidal nanocrystals, these materials have photoluminescence properties that are remarkably similar to those of copper-doped semiconductor nanocrystals. This review focuses on the luminescent properties of colloidal copper-doped, copper-based, and related copper-containing semiconductor nanocrystals. Fundamental investigations into the luminescence of copper-containing colloidal nanocrystals are reviewed in the context of the well-established luminescence mechanisms of bulk copper-doped semiconductors and copper(I) molecular coordination complexes. The use of colloidal copper-containing nanocrystals in applications that take advantage of their luminescent properties, such as bioimaging, solid-state lighting, and luminescent solar concentrators, is also discussed.
                Bookmark

                Author and article information

                Contributors
                dayeon@snu.ac.kr
                jyp23v@snu.ac.kr
                djjang@snu.ac.kr
                Journal
                Nanoscale Res Lett
                Nanoscale Res Lett
                Nanoscale Research Letters
                Springer US (New York )
                1931-7573
                1556-276X
                18 January 2017
                18 January 2017
                2017
                : 12
                : 49
                Affiliations
                ISNI 0000 0004 0470 5905, GRID grid.31501.36, Department of Chemistry, , Seoul National University, ; NS60, Seoul, 08826 Republic of Korea
                Article
                1832
                10.1186/s11671-017-1832-3
                5241571
                28101854
                7cbafbfe-b776-4f7a-a786-65246b0ed430
                © The Author(s). 2017

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 27 May 2016
                : 3 January 2017
                Categories
                Nano Express
                Custom metadata
                © The Author(s) 2017

                Nanomaterials
                doping,energy transfer,impurity position,quantum dots,relaxation dynamics
                Nanomaterials
                doping, energy transfer, impurity position, quantum dots, relaxation dynamics

                Comments

                Comment on this article