• Record: found
  • Abstract: found
  • Article: not found

Modeling the noise equivalent radiance requirements of imaging spectrometers based on scientific applications.

Applied optics

Read this article at

      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


      The derivation of radiometric specifications for imaging spectrometers from the visible to the short-wave infrared part of the spectrum is a task based on the requirements of potential scientific applications. A method for modeling the noise equivalent radiance at-sensor level is proposed. The model starts with surface reflectance signatures, transforms them to at-sensor signatures, and combines signatures of various applications with regard to performance requirements. The wavelength-dependent delta radiances are then derived at predefined radiance levels by use of a model of the sensor performance. The model is applied with regard to the upcoming Airborne Prism Experiment imaging spectrometer system. A combination of various potential application disciplines forms the basis of the experiment. The results help in the definition of radiometric levels for laboratory calibration of the noise equivalent radiance levels, the quantization of the signal, and the spectral range of an instrument to be designed.

      Related collections

      Author and article information



      Comment on this article