6
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      About Notiophilus Duméril, 1806 (Coleoptera, Carabidae): Species delineation and phylogeny using DNA barcodes

      , , ,

      Deutsche Entomologische Zeitschrift

      Pensoft Publishers

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The genus Notiophilus Duméril, 1806 is a distinctive taxon of small, diurnal and morphologically similar beetles exhibiting large eyes and widened second elytral intervals. In this study we analysed the effectiveness of DNA barcodes to discriminate 67 specimens that represent 8 species of Notiophilus from Central Europe. Interspecific K2P distances below 2.2% were found for N. biguttatus (Fabricius, 1779) and N. quadripunctatus Dejean, 1826, whereas intraspecific distances with values > 2.2% were revealed for N. rufipes Curtis, 1829. An additional phylogenetic analysis of all available species revealed a close relationship of N. directus Casey, 1920, N. semistriatus Say, 1823, N. simulator Fall, 1906 and N. sylvaticus Dejean, 1831, possibly indicating a radiation of these species in North America. Low support values of most other nodes, however, do not allow additional phylogenetic conclusions.

          Related collections

          Most cited references 46

          • Record: found
          • Abstract: not found
          • Article: not found

          An inexpensive, automation-friendly protocol for recovering high-quality DNA

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone

            Background Inherited bacteria have come to be recognised as important components of arthropod biology. In addition to mutualistic symbioses, a range of other inherited bacteria are known to act either as reproductive parasites or as secondary symbionts. Whilst the incidence of the α-proteobacterium Wolbachia is relatively well established, the current knowledge of other inherited bacteria is much weaker. Here, we tested 136 arthropod species for a range of inherited bacteria known to demonstrate reproductive parasitism, sampling each species more intensively than in past surveys. Results The inclusion of inherited bacteria other than Wolbachia increased the number of infections recorded in our sample from 33 to 57, and the proportion of species infected from 22.8% to 32.4%. Thus, whilst Wolbachia remained the dominant inherited bacterium, it alone was responsible for around half of all inherited infections of the bacteria sampled, with members of the Cardinium, Arsenophonus and Spiroplasma ixodetis clades each occurring in 4% to 7% of all species. The observation that infection was sometimes rare within host populations, and that there was variation in presence of symbionts between populations indicates that our survey will itself underscore incidence. Conclusion This extensive survey demonstrates that at least a third of arthropod species are infected by a diverse assemblage of maternally inherited bacteria that are likely to strongly influence their hosts' biology, and indicates an urgent need to establish the nature of the interaction between non-Wolbachia bacteria and their hosts.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Biodiversity soup: metabarcoding of arthropods for rapid biodiversity assessment and biomonitoring

                Bookmark

                Author and article information

                Journal
                Deutsche Entomologische Zeitschrift
                DEZ
                Pensoft Publishers
                1860-1324
                1435-1951
                May 29 2019
                May 29 2019
                : 66
                : 1
                : 63-73
                Article
                10.3897/dez.66.34711
                © 2019

                Comments

                Comment on this article