5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Aptamer-Based Nanoporous Anodic Alumina Interferometric Biosensor for Real-Time Thrombin Detection

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aptamer biosensors are one of the most powerful techniques in biosensing. Achieving the best platform to use in aptamer biosensors typically includes crucial chemical modifications that enable aptamer immobilization on the surface in the most efficient manner. These chemical modifications must be well defined. In this work we propose nanoporous anodic alumina (NAA) chemically modified with streptavidin as a platform for aptamer immobilization. The immobilization of biotinylated thrombin binding aptamer (TBA) was monitored in real time by means of reflective interferometric spectroscopy (RIfS). The study has permitted to characterize in real time the path to immobilize TBA on the inner pore walls of NAA. Furthermore, this study provides an accurate label-free method to detect thrombin in real-time with high affinity and specificity.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Aptamers as targeted therapeutics: current potential and challenges

          Nucleic acid aptamers offer several advantages over traditional antibodies, but their clinical translation has been delayed by several factors, including insufficient potency, lack of safety data and high production costs. Here, Zhou and Rossi provide an overview of aptamer generation, focusing on recent technological advances and clinical development, as well as challenges and lessons learned.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An overview of foodborne pathogen detection: in the perspective of biosensors.

            Food safety is a global health goal and the foodborne diseases take a major crisis on health. Therefore, detection of microbial pathogens in food is the solution to the prevention and recognition of problems related to health and safety. For this reason, a comprehensive literature survey has been carried out aiming to give an overview in the field of foodborne pathogen detection. Conventional and standard bacterial detection methods such as culture and colony counting methods, immunology-based methods and polymerase chain reaction based methods, may take up to several hours or even a few days to yield an answer. Obviously this is inadequate, and recently many researchers are focusing towards the progress of rapid methods. Although new technologies like biosensors show potential approaches, further research and development is essential before biosensors become a real and reliable choice. New bio-molecular techniques for food pathogen detection are being developed to improve the biosensor characteristics such as sensitivity and selectivity, also which is rapid, reliable, effective and suitable for in situ analysis. This paper not only offers an overview in the area of microbial pathogen detection but it also describes the conventional methods, analytical techniques and recent developments in food pathogen detection, identification and quantification, with an emphasis on biosensors. Copyright 2009 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Development of DNA aptamers using Cell-SELEX.

              In the past two decades, high-affinity nucleic acid aptamers have been developed for a wide variety of pure molecules and complex systems such as live cells. Conceptually, aptamers are developed by an evolutionary process, whereby, as selection progresses, sequences with a certain conformation capable of binding to the target of interest emerge and dominate the pool. This protocol, cell-SELEX (systematic evolution of ligands by exponential enrichment), is a method that can generate DNA aptamers that can bind specifically to a cell type of interest. Commonly, a cancer cell line is used as the target to generate aptamers that can differentiate that cell type from other cancers or normal cells. A single-stranded DNA (ssDNA) library pool is incubated with the target cells. Nonbinding sequences are washed off and bound sequences are recovered from the cells by heating cell-DNA complexes at 95 degrees C, followed by centrifugation. The recovered pool is incubated with the control cell line to filter out the sequences that bind to common molecules on both the target and the control, leading to the enrichment of specific binders to the target. Binding sequences are amplified by PCR using fluorescein isothiocyanate-labeled sense and biotin-labeled antisense primers. This is followed by removal of antisense strands to generate an ssDNA pool for subsequent rounds of selection. The enrichment of the selected pools is monitored by flow cytometry binding assays, with selected pools having increased fluorescence compared with the unselected DNA library. The procedure, from design of oligonucleotides to enrichment of the selected pools, takes approximately 3 months.
                Bookmark

                Author and article information

                Journal
                Sensors (Basel)
                Sensors (Basel)
                sensors
                Sensors (Basel, Switzerland)
                MDPI
                1424-8220
                19 October 2019
                October 2019
                : 19
                : 20
                Affiliations
                Departament d’Enginyeria Electrònica, Elèctrica i Automàtica, ETSE, Universitat Rovira i Virgili, Avda. Països Catalans 26, 43007 Tarragona, Spain; laura.pol@ 123456urv.cat (L.P.); laurakaren.acosta@ 123456urv.cat (L.K.A.); josep.ferre@ 123456urv.cat (J.F.-B.)
                Author notes
                [* ]Correspondence: lluis.marsal@ 123456urv.cat ; Tel.: +34-977-55-96-25
                Article
                sensors-19-04543
                10.3390/s19204543
                6833485
                31635027
                7cee0f3d-d159-4829-b602-ac2a8614d217
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                Categories
                Article

                Biomedical engineering
                nanoporous anodic alumina,streptavidin,aptamers,thrombin,rifs,biosensing
                Biomedical engineering
                nanoporous anodic alumina, streptavidin, aptamers, thrombin, rifs, biosensing

                Comments

                Comment on this article