1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Transatlantic discovery of Notocotylus atlanticus (Digenea: Notocotylidae) based on life cycle data

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: not found
          • Article: not found

          Phylogeny and classification of the Digenea (Platyhelminthes: Trematoda)11Nucleotide sequence data reported in this paper are available in the GenBank™, EMBL and DDBJ databases under the accession numbers AY222082–AY222285.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular phylogeny and systematics of the Echinostomatoidea Looss, 1899 (Platyhelminthes: Digenea).

            The Echinostomatoidea is a large, cosmopolitan group of digeneans currently including nine families and 105 genera, the vast majority parasitic, as adults, in birds with relatively few taxa parasitising mammals, reptiles and, exceptionally, fish. Despite the complex structure, diverse content and substantial species richness of the group, almost no attempt has been made to elucidate its phylogenetic relationships at the suprageneric level based on molecules due to the lack of data. Herein, we evaluate the consistency of the present morphology-based classification system of the Echinostomatoidea with the phylogenetic relationships of its members based on partial sequences of the nuclear lsrRNA gene for a broad diversity of taxa (80 species, representing eight families and 40 genera), including representatives of five subfamilies of the Echinostomatidae, which currently exhibits the most complex taxonomic structure within the superfamily. This first comprehensive phylogeny for the Echinostomatoidea challenged the current systematic framework based on comparative morphology. A morphology-based evaluation of this new molecular framework resulted in a number of systematic and nomenclatural changes consistent with the phylogenetic estimates of the generic and suprageneric boundaries and a new phylogeny-based classification of the Echinostomatoidea. In the current systematic treatment: (i) the rank of two family level lineages, the former Himasthlinae and Echinochasminae, is elevated to full family status; (ii) Caballerotrema is distinguished at the family level; (iii) the content and diagnosis of the Echinostomatidae (sensu stricto) (s. str.) are revised to reflect its phylogeny, resulting in the abolition of the Nephrostominae and Chaunocephalinae as synonyms of the Echinostomatidae (s. str.); (iv) Artyfechinostomum, Cathaemasia, Rhopalias and Ribeiroia are re-allocated within the Echinostomatidae (s. str.), resulting in the abolition of the Cathaemasiidae, Rhopaliidae and Ribeiroiinae, which become synonyms of the Echinostomatidae (s. str.); and (v) refinements of the generic boundaries within the Echinostomatidae (s. str.), Psilostomidae and Fasciolidae are made.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pushing short DNA fragments to the limit: Phylogenetic relationships of 'hydrobioid' gastropods (Caenogastropoda: Rissooidea).

              Although phylogenetic studies are increasingly utilizing multi-locus datasets, a review of GenBank data for the Gastropoda indicates a strong bias towards a few short gene fragments (most commonly COI, LSU rRNA, and SSU rRNA). This is particularly the case for the Rissooidea, one of the largest and most taxonomically difficult gastropod superfamilies. Here we analyze fragments of these three genes from 90 species to determine whether they can well resolve higher relationships within this superfamily, whether structurally aligned sequence datasets increase phylogenetic signal, and whether the inclusion of highly variable regions introduces noise. We also used the resulting phylogenetic data in combination with morphological/anatomical evidence to re-evaluate the taxonomic status of 'hydrobioid' family-level groups. Our results indicate that all three of the alignment strategies that were used resulted in phylogenies having similar signal levels. However, there was a slight advantage to using structural alignment for inferring family-level relationships. Moreover, the set of 'standard' gastropod genes supported recognition of many previously recognized families and provides new insight into the systematics of several problematic groups. However, some family-group taxa were unresolved and the relationships among families were also poorly supported, suggesting a need for more extensive sampling and inclusion of additional genes. Copyright © 2012 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Parasitology Research
                Parasitol Res
                Springer Science and Business Media LLC
                0932-0113
                1432-1955
                May 2019
                March 28 2019
                May 2019
                : 118
                : 5
                : 1445-1456
                Article
                10.1007/s00436-019-06297-8
                7cf5c649-8d3b-4418-8e2f-2fe74a395d45
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article