158
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Polymorphisms in COL4A3 and COL4A4 genes associated with keratoconus

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          Alterations in collagen type IV, alpha-3 ( COL4A3) and collagen type IV, alpha-4 ( COL4A4) genes may be responsible for a decrease in collagen types I and III, a feature often detected in keratoconus (KC). To evaluate the significance of alterations in COL4A3 and COL4A4 genes in KC patients, we screened both genes and estimated the significance of polymorphisms in Slovenian patients with KC.

          Methods

          The study included 104 unrelated patients with KC and 157 healthy blood donors. Diagnosis was established by clinical examination, electronic refractometry, and keratometry. DNA was extracted from blood, and gene exons were amplified by PCR. Non-isotopic high-resolution single-stranded conformation analysis (SSCA) was used to screen COL4A3 and COL4A4 genes, and migration shifts detected by SSCA were subsequently sequenced. For statistical evaluation, control blood donors were chosen according to age, sex, and not having blood relationship. Neither patients nor control blood donors chosen for statistical analysis were in blood relationship. We used Fisher’s exact test for statistical evaluation, with p<0.05 considered significant.

          Results

          We detected eight polymorphisms in the COL4A3 gene and six in the COL4A4 gene. Allele differences in D326Y in COL4A3 and M1237V and F1644F in COL4A4 are significantly distinctive of KC patients (Fisher’s exact test, p<0.05). When analyzing different genotypes under three models (dominant, recessive, and additive), we established that P141L, D326Y, and G895G in COL4A3 and P482S, M1327V, V1516V, and F1644F in COL4A4 have significant differences in genotype distribution between KC patients and the control group.

          Conclusions

          This is the first mutational screening of COL4A3 and COL4A4 genes in KC patients to establish the status of these genes and compare them to a control population. Analysis of COL4A3 and COL4A4 revealed no mutations related to KC patients, but specific genotypes of seven previously described polymorphisms are significantly associated with KC under dominant, recessive, or additive models. Differences in the expression of type IV collagen in previously published data about chromosomal instabilities in the regions in which the analyzed genes were mapped and our data indicate a probability that some of the polymorphisms we detected could be related to KC.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Keratoconus.

          Keratoconus is a bilateral noninflammatory corneal ectasia with an incidence of approximately 1 per 2,000 in the general population. It has well-described clinical signs, but early forms of the disease may go undetected unless the anterior corneal topography is studied. Early disease is now best detected with videokeratography. Classic histopathologic features include stromal thinning, iron deposition in the epithelial basement membrane, and breaks in Bowman's layer. Keratoconus is most commonly an isolated disorder, although several reports describe an association with Down syndrome, Leber's congenital amaurosis, and mitral valve prolapse. The differential diagnosis of keratoconus includes keratoglobus, pellucid marginal degeneration and Terrien's marginal degeneration. Contact lenses are the most common treatment modality. When contact lenses fail, corneal transplant is the best and most successful surgical option. Despite intensive clinical and laboratory investigation, the etiology of keratoconus remains unclear. Clinical studies provide strong indications of a major role for genes in its etiology. Videokeratography is playing an increasing role in defining the genetics of keratoconus, since early forms of the disease can be more accurately detected and potentially quantified in a reproducible manner. Laboratory studies suggest a role for degradative enzymes and proteinase inhibitors and a possible role for the interleukin-1 system in its pathogenesis, but these roles need to be more clearly defined. Genes suggested by these studies, as well as collagen genes and their regulatory products, could potentially be used as candidate genes to study patients with familial keratoconus. Such studies may provide the clues needed to enable us to better understand the underlying mechanisms that cause the corneal thinning in this disorder.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Changes in collagen orientation and distribution in keratoconus corneas.

            To map the collagen orientation and relative distribution of collagen fibrillar mass in keratoconus corneal buttons. Structural analysis was performed by obtaining synchrotron x-ray scattering patterns across the samples at 0.25-mm intervals. The patterns were analyzed to produce two-dimensional maps of the orientation of the lamellae and of the distribution of total and preferentially aligned lamellae. Compared with normal corneas, in keratoconus the gross organization of the stromal lamellae was dramatically changed, and the collagen fibrillar mass was unevenly distributed, particularly around the presumed apex of the cone. The development of keratoconus involves a high degree of inter- and probably intralamellar displacement and slippage that leads to thinning of the central cornea and associated changes in corneal curvature. This slippage may be promoted by a loss of cohesive forces and mechanical failure in regions where lamellae bifurcate.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of mutations in the alpha 3(IV) and alpha 4(IV) collagen genes in autosomal recessive Alport syndrome.

              Alport syndrome (AS) is an hereditary disease of basement membranes characterized by progressive renal failure and deafness. Changes in the glomerular basement membrane (GBM) in AS suggest that the type IV collagen matrix, the major structural component of GBM, is disrupted. We recently isolated the genes for two type IV collagens, alpha 3(IV) and alpha 4(IV), that are encoded head-to-head on human chromosome 2. These chains are abundant in normal GBM but are sometimes absent in AS. We screened for mutations in families in which consanguinity suggested autosomal recessive inheritance. Homozygous mutations were found in alpha 3(IV) in two families and in alpha 4(IV) in two others, demonstrating that these chains are important in the structural integrity of the GBM and that there is an autosomal form of AS in addition to the previously-defined X-linked form.
                Bookmark

                Author and article information

                Journal
                Mol Vis
                MV
                Molecular Vision
                Molecular Vision
                1090-0535
                2009
                20 December 2009
                : 15
                : 2848-2860
                Affiliations
                [1 ]Eye Hospital, University Medical Centre, Ljubljana, Slovenia
                [2 ]Department of Molecular Genetics, Faculty of Medicine, University of Ljubljana, Slovenia
                Author notes

                The first two authors contributed equally to this work

                Correspondence to: Mojca Stražišar, Ph.D., Department of Molecular Genetics, Faculty of Medicine, Institute of Pathology, Korytkova 2, 1000 Ljubljana, Slovenia; Phone: 386 1 543 7195; FAX: 386 1 543 7101; email: mojca.strazisar@ 123456mf.uni-lj.si
                Article
                301 2009MOLVIS0241
                2796875
                20029656
                7cf82ac1-da64-4b91-9637-9f30fac8e7fe
                Copyright © 2008 Molecular Vision.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 10 July 2009
                : 15 December 2009
                Categories
                Research Article
                Custom metadata
                Export to XML
                Stražišar

                Vision sciences
                Vision sciences

                Comments

                Comment on this article