1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of Ischemia-Reperfusion on Tubular Cell Membrane Transporters and Consequences in Kidney Transplantation

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ischemia-reperfusion (IR)-induced acute kidney injury (IRI) is an inevitable event in kidney transplantation. It is a complex pathophysiological process associated with numerous structural and metabolic changes that have a profound influence on the early and the late function of the transplanted kidney. Proximal tubular cells are particularly sensitive to IRI. These cells are involved in renal and whole-body homeostasis, detoxification processes and drugs elimination by a transporter-dependent, transcellular transport system involving Solute Carriers (SLCs) and ATP Binding Cassettes (ABCs) transporters. Numerous studies conducted mainly in animal models suggested that IRI causes decreased expression and activity of some major tubular transporters. This could favor uremic toxins accumulation and renal metabolic alterations or impact the pharmacokinetic/toxicity of drugs used in transplantation. It is of particular importance to understand the underlying mechanisms and effects of IR on tubular transporters in order to improve the mechanistic understanding of IRI pathophysiology, identify biomarkers of graft function or promote the design and development of novel and effective therapies. Modulation of transporters’ activity could thus be a new therapeutic opportunity to attenuate kidney injury during IR.

          Related collections

          Most cited references163

          • Record: found
          • Abstract: found
          • Article: not found

          Pathophysiology of acute kidney injury.

          Acute kidney injury (AKI) is the leading cause of nephrology consultation and is associated with high mortality rates. The primary causes of AKI include ischemia, hypoxia, or nephrotoxicity. An underlying feature is a rapid decline in glomerular filtration rate (GFR) usually associated with decreases in renal blood flow. Inflammation represents an important additional component of AKI leading to the extension phase of injury, which may be associated with insensitivity to vasodilator therapy. It is suggested that targeting the extension phase represents an area potential of treatment with the greatest possible impact. The underlying basis of renal injury appears to be impaired energetics of the highly metabolically active nephron segments (i.e., proximal tubules and thick ascending limb) in the renal outer medulla, which can trigger conversion from transient hypoxia to intrinsic renal failure. Injury to kidney cells can be lethal or sublethal. Sublethal injury represents an important component in AKI, as it may profoundly influence GFR and renal blood flow. The nature of the recovery response is mediated by the degree to which sublethal cells can restore normal function and promote regeneration. The successful recovery from AKI depends on the degree to which these repair processes ensue and these may be compromised in elderly or chronic kidney disease (CKD) patients. Recent data suggest that AKI represents a potential link to CKD in surviving patients. Finally, earlier diagnosis of AKI represents an important area in treating patients with AKI that has spawned increased awareness of the potential that biomarkers of AKI may play in the future. © 2012 American Physiological Society. Compr Physiol 2:1303-1353, 2012.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD.

            Acute kidney injury is an increasingly common complication of hospital admission and is associated with high levels of morbidity and mortality. A hypotensive, septic, or toxic insult can initiate a cascade of events, resulting in impaired microcirculation, activation of inflammatory pathways and tubular cell injury or death. These processes ultimately result in acutely impaired kidney function and initiation of a repair response. This Review explores the various mechanisms responsible for the initiation and propagation of acute kidney injury, the prototypic mechanisms by which a substantially damaged kidney can regenerate its normal architecture, and how the adaptive processes of repair can become maladaptive. These mechanisms, which include G2/M cell-cycle arrest, cell senescence, profibrogenic cytokine production, and activation of pericytes and interstitial myofibroblasts, contribute to the development of progressive fibrotic kidney disease. The end result is a state that mimics accelerated kidney ageing. These mechanisms present important opportunities for the design of targeted therapeutic strategies to promote adaptive renal recovery and minimize progressive fibrosis and chronic kidney disease after acute insults.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pathophysiology of ischemic acute kidney injury.

              Acute kidney injury (AKI) as a consequence of ischemia is a common clinical event leading to unacceptably high morbidity and mortality, development of chronic kidney disease (CKD), and transition from pre-existing CKD to end-stage renal disease. Data indicate a close interaction between the many cell types involved in the pathophysiology of ischemic AKI, which has critical implications for the treatment of this condition. Inflammation seems to be the common factor that links the various cell types involved in this process. In this Review, we describe the interactions between these cells and their response to injury following ischemia. We relate these events to patients who are at high risk of AKI, and highlight the characteristics that might predispose these patients to injury. We also discuss how therapy targeting specific cell types can minimize the initial and subsequent injury following ischemia, thereby limiting the extent of acute changes and, hopefully, long-term structural and functional alterations to the kidney.
                Bookmark

                Author and article information

                Journal
                J Clin Med
                J Clin Med
                jcm
                Journal of Clinical Medicine
                MDPI
                2077-0383
                12 August 2020
                August 2020
                : 9
                : 8
                : 2610
                Affiliations
                [1 ]IPPRITT UMR1248, Université de Limoges, INSERM, F-87042 Limoges, France; quentin.faucher@ 123456unilim.fr (Q.F.); hugo.alarcan@ 123456unilim.fr (H.A.); pierre.marquet@ 123456unilim.fr (P.M.)
                [2 ]Department of Pharmacology and Toxicology, CHU Limoges, F-87042 Limoges, France
                [3 ]Laboratory of Biochemistry and Molecular Biology, CHU Tours, F-37000 Tours, France
                [4 ]Department of Pharmacology, Université de Tours, F-37044 Tours, France
                Author notes
                Author information
                https://orcid.org/0000-0003-0983-8996
                https://orcid.org/0000-0001-5846-8616
                Article
                jcm-09-02610
                10.3390/jcm9082610
                7464608
                32806541
                7d0b7167-4e6c-4b49-8714-9d981711264f
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 06 July 2020
                : 06 August 2020
                Categories
                Review

                ischemia/reperfusion injury,kidney transplantation,renal tubular transporters,drug transporters,toxin elimination

                Comments

                Comment on this article