59
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Protein release from alginate matrices

      Advanced Drug Delivery Reviews
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There are a variety of both natural and synthetic polymeric systems that have been investigated for the controlled release of proteins. Many of the procedures employed to incorporate proteins into a polymeric matrix can be harsh and often cause denaturation of the active agent. Alginate, a naturally occurring biopolymer extracted from brown algae (kelp), has several unique properties that have enabled it to be used as a matrix for the entrapment and/or delivery of a variety of biological agents. Alginate polymers are a family of linear unbranched polysaccharides which contain varying amounts of 1,4'-linked beta-D-mannuronic acid and alpha-L-guluronic acid residues. The residues may vary widely in composition and sequence and are arranged in a pattern of blocks along the chain. Alginate can be ionically crosslinked by the addition of divalent cations in aqueous solution. The relatively mild gelation process has enabled not only proteins, but cells and DNA to be incorporated into alginate matrices with retention of full biological activity. Furthermore, by selection of the type of alginate and coating agent, the pore size, degradation rate, and ultimately release kinetics can be controlled. Gels of different morphologies can be prepared including large block matrices, large beads (>1 mm in diameter) and microbeads (<0.2 mm in diameter). In situ gelling systems have also been made by the application of alginate to the cornea, or on the surfaces of wounds. Alginate is a bioadhesive polymer which can be advantageous for the site specific delivery to mucosal tissues. All of these properties, in addition to the nonimmunogenicity of alginate, have led to an increased use of this polymer as a protein delivery system. This review will discuss the chemistry of alginate, its gelation mechanisms, and the physical properties of alginate gels. Emphasis will be placed on applications in which biomolecules have been incorporated into and released from alginate systems.

          Related collections

          Author and article information

          Journal
          Advanced Drug Delivery Reviews
          Advanced Drug Delivery Reviews
          Elsevier BV
          0169409X
          May 04 1998
          May 04 1998
          : 31
          : 3
          : 267-285
          Article
          10.1016/S0169-409X(97)00124-5
          10837629
          7d10917d-7fad-4548-b0ff-201419428ee7
          © 1998

          https://www.elsevier.com/tdm/userlicense/1.0/

          History

          Comments

          Comment on this article