27
views
0
recommends
+1 Recommend
1 collections
    0
    shares

          The flagship journal of the Society for Endocrinology. Learn more

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Impact of food, alcohol and pH on modified-release hydrocortisone developed to treat congenital adrenal hyperplasia

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          We developed a modified-release hydrocortisone, Chronocort, to replace the cortisol rhythm in patients with congenital adrenal hyperplasia. Food, alcohol and pH affect drug absorption, and it is important to assess their impact when replicating a physiological rhythm.

          Subjects and methods

          In vitro dissolution to study impact of alcohol and pH on Chronocort. A phase 1, three-period, cross over study in 18 volunteers to assess the impact of food on Chronocort and to compare bioavailability to immediate-release hydrocortisone.

          Results

          In vitro dissolution of Chronocort was not affected by gastrointestinal pH up to 6.0 nor by an alcohol content up to 20% v/v. Food delayed and reduced the rate of absorption of Chronocort as reflected by a longer T max (fed vs fasted: 6.75 h vs 4.5 h, P = 0005) and lower C max (549.49 nmol/L vs 708.46 nmol/L, ratio 77% with CI 71–85). Cortisol exposure was similar in fed and fasted state: Geo LSmean ratio (CI) AUC 0t for fed/fasted was 108.33% (102.30–114.72%). Cortisol exposure was higher for Chronocort compared to immediate-release hydrocortisone: Geo LSmean ratios (CI) 118.83% (111.58–126.54%); however, derived free cortisol showed cortisol exposure CIs were within 80.0–125.0%: Geo LSmean ratio (CI) for AUC 0t 112.73% (105.33–120.65%).

          Conclusions

          Gastric pH ≤6.0 and alcohol do not affect hydrocortisone release from Chronocort. Food delays Chronocort absorption, but cortisol exposure is similar in the fasted and fed state and exposure as assessed by free cortisol is similar between Chronocort and immediate-release hydrocortisone.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Improved cortisol exposure-time profile and outcome in patients with adrenal insufficiency: a prospective randomized trial of a novel hydrocortisone dual-release formulation.

          Patients with treated adrenal insufficiency (AI) have increased morbidity and mortality rate. Our goal was to improve outcome by developing a once-daily (OD) oral hydrocortisone dual-release tablet with a more physiological exposure-time cortisol profile. The aim was to compare pharmacokinetics and metabolic outcome between OD and the same daily dose of thrice-daily (TID) dose of conventional hydrocortisone tablets. We conducted an open, randomized, two-period, 12-wk crossover multicenter trial with a 24-wk extension at five university hospital centers. The trial enrolled 64 adults with primary AI; 11 had concomitant diabetes mellitus (DM). The same daily dose of hydrocortisone was administered as OD dual-release or TID. We evaluated cortisol pharmacokinetics. Compared with conventional TID, OD provided a sustained serum cortisol profile 0-4 h after the morning intake and reduced the late afternoon and the 24-h cortisol exposure. The mean weight (difference = -0.7 kg, P = 0.005), systolic blood pressure (difference = -5.5 mm Hg, P = 0.0001) and diastolic blood pressure (difference: -2.3 mm Hg; P = 0.03), and glycated hemoglobin (absolute difference = -0.1%, P = 0.0006) were all reduced after OD compared with TID at 12 wk. Compared with TID, a reduction in glycated hemoglobin by 0.6% was observed in patients with concomitant DM during OD (P = 0.004). The OD dual-release tablet provided a more circadian-based serum cortisol profile. Reduced body weight, reduced blood pressure, and improved glucose metabolism were observed during OD treatment. In particular, glucose metabolism improved in patients with concomitant DM.
            • Record: found
            • Abstract: found
            • Article: not found

            Modified-release hydrocortisone to provide circadian cortisol profiles.

            Cortisol has a distinct circadian rhythm regulated by the brain's central pacemaker. Loss of this rhythm is associated with metabolic abnormalities, fatigue, and poor quality of life. Conventional glucocorticoid replacement cannot replicate this rhythm. Our objectives were to define key variables of physiological cortisol rhythm, and by pharmacokinetic modeling test whether modified-release hydrocortisone (MR-HC) can provide circadian cortisol profiles. The study was performed at a Clinical Research Facility. Using data from a cross-sectional study in healthy reference subjects (n = 33), we defined parameters for the cortisol rhythm. We then tested MR-HC against immediate-release hydrocortisone in healthy volunteers (n = 28) in an open-label, randomized, single-dose, cross-over study. We compared profiles with physiological cortisol levels, and modeled an optimal treatment regimen. The key variables in the physiological cortisol profile included: peak 15.5 microg/dl (95% reference range 11.7-20.6), acrophase 0832 h (95% confidence interval 0759-0905), nadir less than 2 microg/dl (95% reference range 1.5-2.5), time of nadir 0018 h (95% confidence interval 2339-0058), and quiescent phase (below the mesor) 1943-0531 h. MR-HC 15 mg demonstrated delayed and sustained release with a mean (sem) maximum observed concentration of 16.6 (1.4) microg/dl at 7.41 (0.57) h after drug. Bioavailability of MR-HC 5, 10, and 15 mg was 100, 79, and 86% that of immediate-release hydrocortisone. Modeling suggested that MR-HC 15-20 mg at 2300 h and 10 mg at 0700 h could reproduce physiological cortisol levels. By defining circadian rhythms and using modern formulation technology, it is possible to allow a more physiological circadian replacement of cortisol.
              • Record: found
              • Abstract: found
              • Article: not found

              Physiochemical and physiological mechanisms for the effects of food on drug absorption: the role of lipids and pH.

              Drugs are absorbed after oral administration as a consequence of a complex array of interactions between the drug, its formulation, and the gastrointestinal (GI) tract. The presence of food within the GI tract impacts significantly on transit profiles, pH, and its solubilization capacity. Consequently, food would be expected to affect the absorption of co-administered drugs when their physicochemical properties are sensitive to these changes. The physicochemical basis by which ingested food/lipids induce changes in the GI tract and influence drug absorption are reviewed. The process of lipid digestion is briefly reviewed and considered in the context of the absorption of poorly water-soluble drugs. The effect of food on GI pH is reviewed in terms of location (stomach, upper and lower small intestine) and the temporal relationship between pH and drug absorption. Case studies are presented in which postprandial changes in bioavailability are rationalized in terms of the sensitivity of the physicochemical properties of the administered drug to the altered GI environment.

                Author and article information

                Journal
                Eur J Endocrinol
                Eur. J. Endocrinol
                EJE
                European Journal of Endocrinology
                Bioscientifica Ltd (Bristol )
                0804-4643
                1479-683X
                January 2017
                17 January 2017
                : 176
                : 4
                : 405-411
                Affiliations
                [1 ]Department of Oncology and Metabolism University of Sheffield, Sheffield, UK
                [2 ]Diurnal Limited Cardiff, UK
                Author notes
                Correspondence should be addressed to R Ross; Email: r.j.ross@ 123456sheffield.ac.uk
                Article
                EJE160948
                10.1530/EJE-16-0948
                5425936
                28100629
                7d16de12-88c4-464c-b607-c936c4235f60
                © 2017 The authors

                This work is licensed under a Creative Commons Attribution 3.0 Unported License.

                History
                : 19 November 2016
                : 11 January 2017
                : 17 January 2017
                Categories
                Clinical Study

                Endocrinology & Diabetes
                Endocrinology & Diabetes

                Comments

                Comment on this article

                Related Documents Log