Blog
About

  • Record: found
  • Abstract: found
  • Article: not found

American College of Sports Medicine position stand. Progression models in resistance training for healthy adults.

Medicine and science in sports and exercise

Read this article at

ScienceOpenPublisherPubMed
Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      In order to stimulate further adaptation toward specific training goals, progressive resistance training (RT) protocols are necessary. The optimal characteristics of strength-specific programs include the use of concentric (CON), eccentric (ECC), and isometric muscle actions and the performance of bilateral and unilateral single- and multiple-joint exercises. In addition, it is recommended that strength programs sequence exercises to optimize the preservation of exercise intensity (large before small muscle group exercises, multiple-joint exercises before single-joint exercises, and higher-intensity before lower-intensity exercises). For novice (untrained individuals with no RT experience or who have not trained for several years) training, it is recommended that loads correspond to a repetition range of an 8-12 repetition maximum (RM). For intermediate (individuals with approximately 6 months of consistent RT experience) to advanced (individuals with years of RT experience) training, it is recommended that individuals use a wider loading range from 1 to 12 RM in a periodized fashion with eventual emphasis on heavy loading (1-6 RM) using 3- to 5-min rest periods between sets performed at a moderate contraction velocity (1-2 s CON; 1-2 s ECC). When training at a specific RM load, it is recommended that 2-10% increase in load be applied when the individual can perform the current workload for one to two repetitions over the desired number. The recommendation for training frequency is 2-3 d x wk(-1) for novice training, 3-4 d x wk(-1) for intermediate training, and 4-5 d x wk(-1) for advanced training. Similar program designs are recommended for hypertrophy training with respect to exercise selection and frequency. For loading, it is recommended that loads corresponding to 1-12 RM be used in periodized fashion with emphasis on the 6-12 RM zone using 1- to 2-min rest periods between sets at a moderate velocity. Higher volume, multiple-set programs are recommended for maximizing hypertrophy. Progression in power training entails two general loading strategies: 1) strength training and 2) use of light loads (0-60% of 1 RM for lower body exercises; 30-60% of 1 RM for upper body exercises) performed at a fast contraction velocity with 3-5 min of rest between sets for multiple sets per exercise (three to five sets). It is also recommended that emphasis be placed on multiple-joint exercises especially those involving the total body. For local muscular endurance training, it is recommended that light to moderate loads (40-60% of 1 RM) be performed for high repetitions (>15) using short rest periods (<90 s). In the interpretation of this position stand as with prior ones, recommendations should be applied in context and should be contingent upon an individual's target goals, physical capacity, and training status.

      Related collections

      Most cited references 47

      • Record: found
      • Abstract: found
      • Article: not found

      Leg extensor power and functional performance in very old men and women.

      1. Residents of a chronic care hospital (13 men of mean age 88.5 +/- 6 SD years and 13 women of mean age 86.5 +/- 6 SD years) who had multiple pathologies were assessed for leg extensor capability in several ways. 2. A custom-built rig was used to assess leg extensor power, that is, maximal power output over less than 1 s in a single extension of one leg. Performance measures were obtained by timing chair rises (from a standard chair 0.43 m high), stair climbing (four risers, total height 0.635 m) and a walk (6.1 m). For each measurement the best of several trials were recorded as definitive. 3. Leg extensor power was significantly correlated with all performance measures, but the performance measures were not related to each other except for chair rising and walking speed. 4. Women had significantly less extensor power than men, but their power explained more of the variance in performance, e.g. power accounted for 86% of the variance in walking speed. 5. There was no relation within the group between age and any of the variables measured. 6. Measurement of leg extensor power in frail elderly people may prove useful in focusing effective rehabilitation programmes.
        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        The optimal training load for the development of dynamic athletic performance.

        This study was performed to determine which of three theoretically optimal resistance training modalities resulted in the greatest enhancement in the performance of a series of dynamic athletic activities. The three training modalities included 1) traditional weight training, 2) plyometric training, and 3) explosive weight training at the load that maximized mechanical power output. Sixty-four previously trained subjects were randomly allocated to four groups that included the above three training modalities and a control group. The experimental groups trained for 10 wk performing either heavy squat lifts, depth jumps, or weighted squat jumps. All subjects were tested prior to training, after 5 wk of training and at the completion of the training period. The test items included 1) 30-m sprint, 2) vertical jumps performed with and without a countermovement, 3) maximal cycle test, 4) isokinetic leg extension test, and 5) a maximal isometric test. The experimental group which trained with the load that maximized mechanical power achieved the best overall results in enhancing dynamic athletic performance recording statistically significant (P < 0.05) improvements on most test items and producing statistically superior results to the two other training modalities on the jumping and isokinetic tests.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          Changes in muscle morphology, electromyographic activity, and force production characteristics during progressive strength training in young and older men.

          Effects of a 10-week progressive strength training program composed of a mixture of exercises for increasing muscle mass, maximal peak force, and explosive strength (rapid force production) were examined in 8 young (YM) (29+/-5 yrs) and 10 old (OM) (61+/-4 yrs) men. Electromyographic activity, maximal bilateral isometric peak force, and maximal rate of force development (RFD) of the knee extensors, muscle cross-sectional area (CSA) of the quadriceps femoris (QF), muscle fiber proportion, and fiber areas of types I, IIa, IIb, and IIab of the vastus lateralis were evaluated. Maximal and explosive strength values remained unaltered in both groups during a 3-week control period with no training preceding the strength training. After the 10-week training period, maximal isometric peak force increased from 1311+/-123 N by 15.6% (p <.05) in YM and from 976+/-168 N by 16.5% (p <.01) in OM. The pretraining RFD values of 4049+/-791 N*s(-1) in YM and 2526+/-1197 N*s(-1) in OM remained unaltered. Both groups showed significant increases (p < .05) in the averaged maximum IEMGs of the vastus muscles. The CSA of the QF increased from 90.3+/-7.9 cm2 in YM by 12.2% (p <.05) and from 74.7+/-7.8 cm2 in OM by 8.5% (p <.001). No changes occurred in the muscle fiber distribution of type I during the training, whereas the proportion of subtype IIab increased from 2% to 6% (p < .05) in YM and that of type IIb decreased in both YM from 25% to 16% (p < .01) and in OM from 15% to 6% (p < .05). The mean fiber area of type I increased after the 10-week training in YM (p < .001) and OM (p < .05) as well as that of type IIa in both YM (p < .01) and OM (p < .01). The individual percentage values for type I fibers were inversely correlated with the individual changes recorded during the training in the muscle CSA of the QF (r=-.56, p < .05). The present results suggest that both neural adaptations and the capacity of the skeletal muscle to undergo training-induced hypertrophy even in older people explain the gains observed in maximal force in older men, while rapid force production capacity recorded during the isometric knee extension action remained unaltered during the present mixed strength training program.
            Bookmark

            Author and article information

            Journal
            Med Sci Sports Exerc
            Medicine and science in sports and exercise
            1530-0315
            0195-9131
            Mar 2009
            : 41
            : 3
            10.1249/MSS.0b013e3181915670
            19204579

            Comments

            Comment on this article

            Similar articles 108

            Cited by 517

            Most referenced authors 524