12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Inhibition of Shiga toxin 2 (Stx2) in apple juices and its resistance to pasteurization.

      Journal of Food Science
      Beverages, microbiology, Colony Count, Microbial, Escherichia coli, immunology, metabolism, Food Microbiology, Food Preservation, methods, Hot Temperature, Malus, Molecular Weight, Oxidoreductases, Shiga Toxin 2, analysis, antagonists & inhibitors, chemistry

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the present study, we evaluated Shiga toxin (Stx2) activity in apple juices by measuring a decrease in dehydrogenase activity of Vero cells with the microculture tetrazolium (MTT) assay. Freshly prepared juice from Red Delicious apples and Golden Delicious apples inhibited the biological activity of the bacterial toxin Stx2 produced by E. coli O157:H7 strains. Studies with immunomagnetic beads bearing specific antibodies against the toxin revealed that Stx2 activity was restored when removed from the apple juice. SDS gel electrophoresis revealed no difference (P < 0.05) in the densities or molecular weights between Stx2 in either PBS or apple juices. These results suggest that Stx2 may be reversibly bound to small molecular weight constituents in the juice. The Stx2 toxin was not inactivated on exposure to heat programs (63 degrees C for 30 min, 72 degrees C for 15 s, 89 degrees C for 1 s) commonly used to pasteurize apple juice, but lost all activity when exposed to 100 degrees C for 5 min. The results suggest that pasteurization of apple juice used to inactivate E. coli O157:H7 has no effect on Stx2, and that food-compatible and safe antitoxin compounds can be used to inhibit the biological activity of the Shiga toxin.

          Related collections

          Author and article information

          Comments

          Comment on this article