9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Changes in Lightning Fire Incidence in the Tasmanian Wilderness World Heritage Area, 1980–2016

      , ,
      Fire
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Tasmanian Wilderness World Heritage Area (TWWHA) has globally significant natural and cultural values, some of which are dependent on the absence of fire or the presence of particular fire regimes. Planned burning is currently used to reduce the risk of loss of world heritage values from unplanned fires, but large and damaging fires still occur, with lightning as the primary ignition source. Lightning-caused fire was rare in the TWWHA before 2000. There has since been an increase in both the number of fires following lightning storms and the area burnt by these fires. In the absence of a direct measurement of lightning strike incidence, we tested whether changes in rainfall, soil dryness and fuel load were responsible for these changes in fire incidence and extent. There were no relationships between these variables and the incidence of fires associated with lightning, but the variability in the Soil Dryness Index and the mean of 25% of driest values did predict both the number and area of fires. Thus, it appears that an increase in the proportion of lightning strikes that occur in dry conditions has increased ignition efficiency. These changes have important implications for the management of the TWWHA’s values, as higher projected fuel loads and drier climates could result in a further increase in the number of fires associated with lightning.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Fire in the Earth system.

          Fire is a worldwide phenomenon that appears in the geological record soon after the appearance of terrestrial plants. Fire influences global ecosystem patterns and processes, including vegetation distribution and structure, the carbon cycle, and climate. Although humans and fire have always coexisted, our capacity to manage fire remains imperfect and may become more difficult in the future as climate change alters fire regimes. This risk is difficult to assess, however, because fires are still poorly represented in global models. Here, we discuss some of the most important issues involved in developing a better understanding of the role of fire in the Earth system.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human-started wildfires expand the fire niche across the United States

            Significance Fighting wildfires in the United States costs billions of dollars annually. Public dialog and ongoing research have focused on increasing wildfire risk because of climate warming, overlooking the direct role that people play in igniting wildfires and increasing fire activity. Our analysis of two decades of government agency wildfire records highlights the fundamental role of human ignitions. Human-started wildfires accounted for 84% of all wildfires, tripled the length of the fire season, dominated an area seven times greater than that affected by lightning fires, and were responsible for nearly half of all area burned. National and regional policy efforts to mitigate wildfire-related hazards would benefit from focusing on reducing the human expansion of the fire niche.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Climate change. Projected increase in lightning strikes in the United States due to global warming.

              Lightning plays an important role in atmospheric chemistry and in the initiation of wildfires, but the impact of global warming on lightning rates is poorly constrained. Here we propose that the lightning flash rate is proportional to the convective available potential energy (CAPE) times the precipitation rate. Using observations, the product of CAPE and precipitation explains 77% of the variance in the time series of total cloud-to-ground lightning flashes over the contiguous United States (CONUS). Storms convert CAPE times precipitated water mass to discharged lightning energy with an efficiency of 1%. When this proxy is applied to 11 climate models, CONUS lightning strikes are predicted to increase 12 ± 5% per degree Celsius of global warming and about 50% over this century.
                Bookmark

                Author and article information

                Journal
                Fire
                Fire
                MDPI AG
                2571-6255
                December 2018
                October 19 2018
                : 1
                : 3
                : 38
                Article
                10.3390/fire1030038
                7d2d4834-69db-4fb0-b6b7-12101bb5f810
                © 2018

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article