5
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sol-gel as methodology to obtain bioactive materials

      research-article

      Read this article at

      SciELO
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We employed the sol­gel methodology to obtain a silica matrix modified with calcium and phosphate ions. We prepared the matrix by hydrolysis and condensation of the precursors triethyl phosphate, calcium nitrate, and tetraethylorthosilicate, which were the sources of phosphate, calcium, and silicon, respectively. We dried and heat­treated the samples at 110 or 900°C and placed them in simulated body fluid (SBF) for three days. We conducted scanning electron microscopy, X­ray diffraction, and infrared spectroscopy analyses, which evidenced that the sample treated at 110°C contained calcium phosphate silicate and hydroxyapatite before and after contact with SBF, respectively. The sample treated at 900°C exhibited a hydroxyapatite phase before and after contact with SBF, but the crystalline phase was more evident after the contact. In conclusion, the sol­gel methodology provided bioactive samples for bone regeneration.

          Translated abstract

          Utilizou­se a metodologia sol­gel para obtenção de uma matriz de sílica modificada com íons de cálcio e fosfato. Preparou­se a matriz, por hidrólise e condensação dos precursores trietil fosfato, nitrato de cálcio, e tetraetilortosilicato, que foram as fontes de fosfato, de cálcio, e de silício, respectivamente. As amostras foram secas e tratadas termicamente a 110 e 900°C e colocadas em contato com fluido corporal simulado (SBF) por três dias. Realizou­se microscopia eletrônica de varredura, difração de raios X, espectroscopia na região do infravermelho, o que evidenciou que a amostra tratada a 110°C continha silicato de cálcio, fosfato e hidroxiapatita, antes e após o contato com SBF, respectivamente. A amostra tratada a 900°C exibiu a fase hidroxiapatita, antes e após o contato com SBF, mas a fase cristalina foi mais evidente após o contato. Em conclusão, o método de sol­gel forneceu amostras bioativas para regeneração óssea.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: not found
          • Article: not found

          Bioactive glass ceramics: properties and applications.

          Heat treatment of an MgO-CaO-SiO2-P2O5 glass gave a glass ceramic containing crystalline apatite (Ca10(PO4)6O,F2] and beta-wollastonite (CaO,SiO2) in an MgO-CaO-SiO2 glassy matrix. It showed bioactivity and a fairly high mechanical strength which decreased only slowly, even under load-bearing conditions in the body. It is used clinically as artificial vertebrae, iliac bones, etc. The bioactivity of this glass ceramic was attributed to apatite formation on its surface in the body. Dissolution of calcium and silicate ions from the glass ceramic was considered to play an important role in forming the surface apatite layer. It was shown that some new kinds of bioactive materials can be developed from CaO,SiO2-based glasses. Ceramics, metals and organic polymers coated with bone-like apatite were obtained when such materials were placed in the vicinity of a CaO,SiO2-based glass in a simulated body fluid. A bioactive bone cement which was hardened within 4 min and bonded to living bone, forming an apatite, was obtained by mixing a CaO,SiO2-based glass powder with a neutral ammonium phosphate solution. Its compressive strength reached 80 MPa comparable to that of poly(methyl methacrylate) within 3 d. A bioactive and ferromagnetic glass ceramic containing crystalline magnetite (Fe3O4) in a matrix of CaO,SiO2-based glassy and crystalline phases was obtained by a heat treatment of a Fe2O3-CaO.SiO2-B2O3-P2O5 glass. This glass ceramic was shown to be useful as thermoseeds for hyperthermia treatment of cancer.
            • Record: found
            • Abstract: not found
            • Article: not found

            Surface complexation of condensed phosphate to aluminum hydroxide: An ATR-FTIR spectroscopic investigation

              • Record: found
              • Abstract: not found
              • Article: not found

              Effect of processing conditions on the formation of hydroxyapatite nanoparticles

                Author and article information

                Contributors
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Journal
                aabc
                Anais da Academia Brasileira de Ciências
                An. Acad. Bras. Ciênc.
                Academia Brasileira de Ciências (Rio de Janeiro )
                1678-2690
                March 2014
                : 86
                : 1
                : 27-36
                Affiliations
                [1 ] Universidade de Franca Brazil
                Article
                S0001-37652014000100027
                10.1590/0001-37652014106012
                7d34e655-7c5b-4882-8b4c-046e4f892f0b

                http://creativecommons.org/licenses/by/4.0/

                History
                Product

                SciELO Brazil

                Self URI (journal page): http://www.scielo.br/scielo.php?script=sci_serial&pid=0001-3765&lng=en
                Categories
                MULTIDISCIPLINARY SCIENCES

                biomateriais,bioativo,SBF,metodologia sol­gel
                biomateriais, bioativo, SBF, metodologia sol­gel

                Comments

                Comment on this article

                Related Documents Log