18
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      International Journal of Nanomedicine (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the application of nanotechnology in diagnostics, therapeutics, and drug delivery systems throughout the biomedical field. Sign up for email alerts here.

      105,621 Monthly downloads/views I 7.033 Impact Factor I 10.9 CiteScore I 1.22 Source Normalized Impact per Paper (SNIP) I 1.032 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Distribution of β-carotene-encapsulated polysorbate 80-coated poly(D, L-lactide-co-glycolide) nanoparticles in rodent tissues following intravenous administration

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          Biodegradable nanoparticles (NPs) composed of poly(D, L-lactide-co-glycolide) (PLGA) have attracted considerable attention as delivery systems of drugs and antioxidative compounds, such as β-carotene (BC). Intravenous (IV) administration of BC-containing PLGA-NPs (BC-PLGA-NPs) coated with polysorbate 80 (PS80) has been shown to effectively deliver BC to the brain. However, the whole-body distribution profile of BC is still not clear. Therefore, we investigated the accumulation of BC in various organs, including the brain, following IV administration of PS80-coated BC-PLGA-NPs in rats.

          Methods

          PS80-coated and uncoated BC-PLGA-NPs were prepared by solvent evaporation, and administered intravenously to Sprague Dawley rats at a BC dose of 8.5 mg/rat. Accumulation of BC in various organs (brain, heart, liver, lungs, and spleen) and blood plasma was evaluated by high performance liquid chromatography with ultraviolet (UV) detection, 1 hour after administration.

          Results

          We prepared PS80-coated BC-PLGA-NPs with an entrapment efficiency of 14%, a particle size of 260 nm, and a zeta potential of −26 mV. Coating with PS80 was found to result in significant accumulation of BC in the lungs, rather than in the brain and other tissues. Further, plasma levels of BC in the PS80-coated BC-PLGA-NP group were much lower than those of the uncoated BC-PLGA-NP group.

          Conclusion

          Following IV administration, PS80-coated BC-PLGA-NPs are quickly transferred from plasma circulation to the lungs, rather than the brain. Significant accumulation of BC in the lungs may be useful for health-related applications.

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Targeted delivery of nanoparticles for the treatment of lung diseases.

          Targeted delivery of drug molecules to organs or special sites is one of the most challenging research areas in pharmaceutical sciences. By developing colloidal delivery systems such as liposomes, micelles and nanoparticles a new frontier was opened for improving drug delivery. Nanoparticles with their special characteristics such as small particle size, large surface area and the capability of changing their surface properties have numerous advantages compared with other delivery systems. Targeted nanoparticle delivery to the lungs is an emerging area of interest. This article reviews research performed over the last decades on the application of nanoparticles administered via different routes of administration for treatment or diagnostic purposes. Nanotoxicological aspects of pulmonary delivery are also discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Preparation of poly(DL-lactide-co-glycolide) nanoparticles by modified spontaneous emulsification solvent diffusion method.

            The objectives of this study were to establish a new preparation method for poly(DL-lactide-co-glycolide) (PLGA) nanoparticles by modifying the spontaneous emulsification solvent diffusion (SESD) method and to elucidate the mechanism of nanoparticle formation on the basis of the phase separation principle of PLGA and poly(vinyl alcohol) (PVA) in the preparation system. PLGA nanoparticles were prepared by the modified-SESD method using various solvent systems consisting of two water-miscible organic solvents, in which one solvent has more affinity to PLGA than to PVA and the other has more affinity to PVA than to PLGA. The yield, particle size, size distribution and PVA content of the PLGA nanoparticles were evaluated, and the phase separation behaviors of the polymers were elucidated. The modified-SESD method provided a good yield of PLGA nanoparticles over a wide range of composition ratios in the binary mixture of organic solvents. Several process parameters, including the fed amount of PLGA, PLGA concentration and PVA concentration were examined to achieve the optimum preparation conditions. The discrete powder of PLGA nanoparticles was obtained by freeze-drying. No change in the PVA content of PLGA nanoparticles was observed even after several times of washing treatment by ultrafiltration, suggesting a strong surface adsorption. It was found that the appropriate selections of binary solvent mixtures and polymeric concentrations in both organic and aqueous phases could provide excellent yield and favorable physical properties of PLGA nanoparticles. The proposed modified-SESD method can be used to provide PLGA nanoparticles of satisfactory quality at an acceptable yield for industrial purposes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Drug delivery to the brain using surfactant-coated poly(lactide-co-glycolide) nanoparticles: influence of the formulation parameters.

              Poly(lactide-co-glycolide) (PLGA) nanoparticles coated with poloxamer 188 (Pluronic((R)) F-68) or polysorbate 80 (Tween((R)) 80) enable an efficient brain delivery of the drugs after intravenous injection. This ability was evidenced by two different pharmacological test systems employing as model drugs the anti-tumour antibiotic doxorubicin and the agonist of opioid receptors loperamide, which being P-gp substrates can cross the blood-brain barrier (BBB) only in pharmacologically insignificant amounts: binding of doxorubicin to the surfactant-coated PLGA nanoparticles, however, enabled a high anti-tumour effect against an intracranial 101/8 glioblastoma in rats, and the penetration of nanoparticle-bound loperamide into the brain was demonstrated by the induction of central analgesic effects in mice. Both pharmacological tests could demonstrate that therapeutic amounts of the drugs were delivered to the sites of action in the brain and showed the high efficiency of the surfactant-coated PLGA nanoparticles for brain delivery. The results of the study also demonstrated that the efficacy of brain delivery by nanoparticles not only is influenced by the coating surfactants but also by other formulation parameters such as core polymer, drug, and stabilizer. Copyright (c) 2009 Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Int J Nanomedicine
                Int J Nanomedicine
                International Journal of Nanomedicine
                International Journal of Nanomedicine
                Dove Medical Press
                1176-9114
                1178-2013
                2015
                27 November 2015
                : 10
                : 7223-7230
                Affiliations
                [1 ]Vascular Biology Laboratory, Jean Mayer USDA (United States Department of Agriculture)-Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
                [2 ]Food and Biodynamic Chemistry Laboratory, Tohoku University, Sendai, Japan
                [3 ]Terahertz Optical & Food Engineering Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
                [4 ]Food and Biotechnology Innovation Project, New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Japan
                [5 ]Food and Health Science Research Unit, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
                Author notes
                Correspondence: Kiyotaka Nakagawa, Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aobaku, Sendai 981-8555, Japan, Tel +81 22 717 8906, Fax +81 22 717 8905, Email nkgw@ 123456m.tohoku.ac.jp
                Article
                ijn-10-7223
                10.2147/IJN.S94336
                4669931
                26664113
                7d352043-cf4a-4c61-a7c2-979e1ac667a9
                © 2015 Miyazawa et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License

                The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Molecular medicine
                β-carotene,intravenous administration,nanoparticles,poly(d, l-lactide-co-glycolide) (plga),polysorbate 80 (ps80),tissue distribution

                Comments

                Comment on this article