12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      PPPC 4 DM secondary: a Poor Particle Physicist Cookbook for secondary radiation from Dark Matter

      , , ,
      Journal of Cosmology and Astroparticle Physics
      IOP Publishing

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: not found
          • Book: not found

          Cosmic Ray Astrophysics

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Propagation of cosmic-ray nucleons in the Galaxy

            We describe a method for the numerical computation of the propagation of primary and secondary nucleons, primary electrons, and secondary positrons and electrons. Fragmentation and energy losses are computed using realistic distributions for the interstellar gas and radiation fields, and diffusive reacceleration is also incorporated. The models are adjusted to agree with the observed cosmic-ray B/C and 10Be/9Be ratios. Models with diffusion and convection do not account well for the observed energy dependence of B/C, while models with reacceleration reproduce this easily. The height of the halo propagation region is determined, using recent 10Be/9Be measurements, as >4 kpc for diffusion/convection models and 4-12 kpc for reacceleration models. For convection models we set an upper limit on the velocity gradient of dV/dz < 7 km/s/kpc. The radial distribution of cosmic-ray sources required is broader than current estimates of the SNR distribution for all halo sizes. Full details of the numerical method used to solve the cosmic-ray propagation equation are given.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Secondary antiprotons and propagation of cosmic rays in the Galaxy and heliosphere

              High-energy collisions of cosmic-ray nuclei with interstellar gas are believed to be the mechanism producing the majority of cosmic ray antiprotons. Due to the kinematics of the process they are created with a nonzero momentum; the characteristic spectral shape with a maximum at ~2 GeV and a sharp decrease towards lower energies makes antiprotons a unique probe of models for particle propagation in the Galaxy and modulation in the heliosphere. On the other hand, accurate calculation of the secondary antiproton flux provides a ``background'' for searches for exotic signals from the annihilation of supersymmetric particles and primordial black hole evaporation. Recently new data with large statistics on both low and high energy antiproton fluxes have become available which allow such tests to be performed. We use our propagation code GALPROP to calculate interstellar cosmic-ray propagation for a variety of models. We show that there is no simple model capable of accurately describing the whole variety of data: boron/carbon and sub-iron/iron ratios, spectra of protons, helium, antiprotons, positrons, electrons, and diffuse gamma rays. We find that only a model with a break in the diffusion coefficient plus convection can reproduce measurements of cosmic-ray species, and the reproduction of primaries (p, He) can be further improved by introducing a break in the primary injection spectra. For our best-fit model we make predictions of proton and antiproton fluxes near the Earth for different modulation levels and magnetic polarity using a steady-state drift model of propagation in the heliosphere.
                Bookmark

                Author and article information

                Journal
                Journal of Cosmology and Astroparticle Physics
                J. Cosmol. Astropart. Phys.
                IOP Publishing
                1475-7516
                September 01 2015
                September 11 2015
                : 2015
                : 09
                : 037
                Article
                10.1088/1475-7516/2015/9/037
                7d3550b8-28c6-4209-9c43-6e14ae2335ad
                © 2015
                History

                Comments

                Comment on this article