16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Shox2 influences mesenchymal stem cell fate in a co-culture model in vitro

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sinoatrial node (SAN) dysfunction is a common cardiovascular problem, and the development of a cell sourced biological pacemaker has been the focus of cardiac electrophysiology research. The aim of biological pacemaker therapy is to produce SAN-like cells, which exhibit spontaneous activity characteristic of the SAN. Short stature homeobox 2 (Shox2) is an early cardiac transcription factor and is crucial in the formation and differentiation of the sinoatrial node (SAN). The present study aimed to improve pacemaker function by overexpression of Shox2 in canine mesenchymal stem cells (cMSCs) to induce a phenotype similar to native pacemaker cells. To achieve this objective, the cMSCs were transfected with lentiviral pLentis-mShox2-red fluorescent protein, and then co-cultured with rat neonatal cardiomyocytes (RNCMs) in vitro for 5–7 days. The feasibility of regulating the differentiation of cMSCs into pacemaker-like cells by Shox2 overexpression was investigated. Reverse transcription-quantitative polymerase chain reaction and western blotting showed that Shox2-transfected cMSCs expressed high levels of T box 3, hyperpolarization-activated cyclic nucleotide-gated cation channel and Connexin 45 genes, which participate in SAN development, and low levels of working myocardium genes, Nkx2.5 and Connexin 43. In addition, Shox2-transfected cMSCs were able to pace RNCMs with a rate faster than the control cells. In conclusion, these data indicate that overexpression of Shox2 in cMSCs can greatly enhance the pacemaker phenotype in a co-culture model in vitro.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Tbx3 controls the sinoatrial node gene program and imposes pacemaker function on the atria.

          The sinoatrial node initiates the heartbeat and controls the rate and rhythm of contraction, thus serving as the pacemaker of the heart. Despite the crucial role of the sinoatrial node in heart function, the mechanisms that underlie its specification and formation are not known. Tbx3, a transcriptional repressor required for development of vertebrates, is expressed in the developing conduction system. Here we show that Tbx3 expression delineates the sinoatrial node region, which runs a gene expression program that is distinct from that of the bordering atrial cells. We found lineage segregation of Tbx3-negative atrial and Tbx3-positive sinoatrial node precursor cells as soon as cardiac cells turn on the atrial gene expression program. Tbx3 deficiency resulted in expansion of expression of the atrial gene program into the sinoatrial node domain, and partial loss of sinoatrial node-specific gene expression. Ectopic expression of Tbx3 in mice revealed that Tbx3 represses the atrial phenotype and imposes the pacemaker phenotype on the atria. The mice displayed arrhythmias and developed functional ectopic pacemakers. These data identify a Tbx3-dependent pathway for the specification and formation of the sinoatrial node, and show that Tbx3 regulates the pacemaker gene expression program and phenotype.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Formation of the sinus node head and differentiation of sinus node myocardium are independently regulated by Tbx18 and Tbx3.

            The sinus node (or sinoatrial node [SAN]), the pacemaker of the heart, is a functionally and structurally heterogeneous tissue, which consists of a large "head" within the right caval vein myocardium and a "tail" along the terminal crest. Here, we investigated its cellular origin and mechanism of formation. Using genetic lineage analysis and explant assays, we identified T-box transcription factor Tbx18-expressing mesenchymal progenitors in the inflow tract region that differentiate into pacemaker myocardium to form the SAN. We found that the head and tail represent separate regulatory domains expressing distinctive gene programs. Tbx18 is required to establish the large head structure, as seen by the existence of a very small but still functional tail piece in Tbx18-deficient fetuses. In contrast, Tbx3-deficient embryos formed a morphologically normal SAN, which, however, aberrantly expressed Cx40 and other atrial genes, demonstrating that Tbx3 controls differentiation of SAN head and tail cardiomyocytes but also demonstrating that Tbx3 is not required for the formation of the SAN structure. Our data establish a functional order for Tbx18 and Tbx3 in SAN formation, in which Tbx18 controls the formation of the SAN head from mesenchymal precursors, on which Tbx3 subsequently imposes the pacemaker gene program.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Shox2 is essential for the differentiation of cardiac pacemaker cells by repressing Nkx2-5.

              The pacemaker is composed of specialized cardiomyocytes located within the sinoatrial node (SAN), and is responsible for originating and regulating the heart beat. Recent advances towards understanding the SAN development have been made on the genetic control and gene interaction within this structure. Here we report that the Shox2 homeodomain transcription factor is restrictedly expressed in the sinus venosus region including the SAN and the sinus valves during embryonic heart development. Shox2 null mutation results in embryonic lethality due to cardiovascular defects, including an abnormal low heart beat rate (bradycardia) and severely hypoplastic SAN and sinus valves attributed to a significantly decreased level of cell proliferation. Genetically, the lack of Tbx3 and Hcn4 expression, along with ectopic activation of Nppa, Cx40, and Nkx2-5 in the Shox2(-/-) SAN region, indicates a failure in SAN differentiation. Furthermore, Shox2 overexpression in Xenopus embryos results in extensive repression of Nkx2-5 in the developing heart, leading to a reduced cardiac field and aberrant heart formation. Reporter gene expression assays provide additional evidence for the repression of Nkx2-5 promoter activity by Shox2. Taken together our results demonstrate that Shox2 plays an essential role in the SAN and pacemaker development by controlling a genetic cascade through the repression of Nkx2-5.
                Bookmark

                Author and article information

                Journal
                Mol Med Rep
                Mol Med Rep
                Molecular Medicine Reports
                D.A. Spandidos
                1791-2997
                1791-3004
                July 2016
                18 May 2016
                18 May 2016
                : 14
                : 1
                : 637-642
                Affiliations
                [1 ]Department of Cardiology, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
                [2 ]Department of Cardiology, The 401 Hospital of PLA, Qingdao, Shandong 266071, P.R. China
                Author notes
                Correspondence to: Professor Zhiyuan Song, Department of Cardiology, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Road, Shapingba, Chongqing 400038, P.R. China, E-mail: zysong2010@ 123456126.com
                [*]

                Contributed equally

                Article
                mmr-14-01-0637
                10.3892/mmr.2016.5306
                4918598
                27222368
                7d3d612d-60e4-4adb-9ff4-6a0abec07c49
                Copyright: © Feng et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 20 April 2015
                : 24 February 2016
                Categories
                Articles

                shox2,neonatal cardiomyocytes,co-culture,mesenchymal stem cells,cardiomyogenic differentiation

                Comments

                Comment on this article