14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      DNA vaccines delivered by human papillomavirus pseudovirions as a promising approach for generating antigen-specific CD8+ T cell immunity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Human papillomavirus (HPV) pseudovirions have recently been shown to deliver DNA efficiently in vivo, resulting in the priming of antigen-specific CD8+ T cells in vaccinated mice. In the current study, we compare the different preparation methods for the generation of HPV pseudovirions for their ability to efficiently infect cells. We also compare the antigen-specific CD8+ T cell immune responses generated by different DNA delivery methods and several commonly used forms of vaccination with that of HPV pseudovirions.

          Results

          We found that the preparation method of pseudovirions is important for the efficient delivery of encapsidated DNA. We have shown that vaccination with DNA encoding model antigen ovalbumin (OVA) delivered by HPV-16 pseudovirions was capable of generating therapeutic antitumor effects against OVA-expressing tumor. In addition, vaccination with DNA encoding OVA delivered by HPV-16 pseudovirions generated the highest number of OVA-specific CD8+ T cells in mice in our system compared to DNA delivered by other delivery methods. We also found that vaccination with OVA DNA delivered by HPV-16 pseudovirions generated the highest number of OVA-specific CD8+ T cells in mice compared to other forms of antigen-specific vaccines. Furthermore, HPV-16 pseudovirions were capable of carrying DNA vaccine encoding clinically relevant antigen, telomerase reverse transcriptase, to generate antigen-specific CD8+ T cell immune responses.

          Conclusions

          Our data suggest that DNA vaccines delivered by HPV-16 pseudovirions may be advantageous compared to other delivery methods and other forms of antigen-specific vaccines for application to antigen-specific immunotherapy.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Telomerase and cancer therapeutics.

          Telomerase is an attractive cancer target as it appears to be required in essentially all tumours for immortalization of a subset of cells, including cancer stem cells. Moreover, differences in telomerase expression, telomere length and cell kinetics between normal and tumour tissues suggest that targeting telomerase would be relatively safe. Clinical trials are ongoing with a potent and specific telomerase inhibitor, GRN163L, and with several versions of telomerase therapeutic vaccines. The prospect of adding telomerase-based therapies to the growing list of new anticancer products is promising, but what are the advantages and limitations of different approaches, and which patients are the most likely to respond?
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Vaccination with cytotoxic T lymphocyte epitope-containing peptide protects against a tumor induced by human papillomavirus type 16-transformed cells.

            Cytotoxic T lymphocyte (CTL) peptide epitopes can be used for immunization of mice against lethal virus infection. To study whether this approach can be successful against virus-induced tumors we generated a B6 (H-2b) tumorigenic cell line transformed by human papillomavirus (HPV). This virus is detected in over 90% of all human cervical cancers. To identify vaccine candidates, we generated a set of 240 overlapping peptides derived from the HPV type 16 (HPV16) oncogenes E6 and E7. These peptides were tested for their ability to bind H-2Kb and H-2Db MHC class I molecules. Binding peptides were compared with the presently known peptide-binding motifs for H-2Kb and H-2Db and the predictive value of these motifs is shortly discussed. The high-affinity H-2Db-binding peptide and putative CTL epitope E7 49-57 (RAHYNIVTF) was used in vaccination studies against HPV 16-transformed tumor cells. Immunization with peptide E7 49-57 rendered mice insensitive to a subsequent challenge with HPV 16-transformed tumor cells in vivo, and induced a CTL response which lysed the tumor cells in vitro.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Efficient intracellular assembly of papillomaviral vectors.

              Although the papillomavirus structural proteins, L1 and L2, can spontaneously coassemble to form virus-like particles, currently available methods for production of L1/L2 particles capable of transducing reporter plasmids into mammalian cells are technically demanding and relatively low-yield. In this report, we describe a simple 293 cell transfection method for efficient intracellular production of papillomaviral-based gene transfer vectors carrying reporter plasmids. Using bovine papillomavirus type 1 (BPV1) and human papillomavirus type 16 as model papillomaviruses, we have developed a system for producing papillomaviral vector stocks with titers of several billion transducing units per milliliter. Production of these vectors requires both L1 and L2, and transduction can be prevented by papillomavirus-neutralizing antibodies. The stocks can be purified by an iodixanol (OptiPrep) gradient centrifugation procedure that is substantially more effective than standard cesium chloride gradient purification. Although earlier data had suggested a potential role for the viral early protein E2, we found that E2 protein expression did not enhance the intracellular production of BPV1 vectors. It was also possible to encapsidate reporter plasmids devoid of BPV1 DNA sequences. BPV1 vector production efficiency was significantly influenced by the size of the target plasmid being packaged. Use of 6-kb target plasmids resulted in BPV1 vector yields that were higher than those with target plasmids closer to the native 7.9-kb size of papillomavirus genomes. The results suggest that the intracellular assembly of papillomavirus structural proteins around heterologous reporter plasmids is surprisingly promiscuous and may be driven primarily by a size discrimination mechanism.
                Bookmark

                Author and article information

                Journal
                Cell Biosci
                Cell & Bioscience
                BioMed Central
                2045-3701
                2011
                28 July 2011
                : 1
                : 26
                Affiliations
                [1 ]Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
                [2 ]Department of Obstetrics and Gynecology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
                [3 ]Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
                [4 ]Department of Molecular Microbiology and Immunology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
                [5 ]Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY, USA
                Article
                2045-3701-1-26
                10.1186/2045-3701-1-26
                3162874
                21798027
                7d589759-f63a-4897-93b2-c96508830954
                Copyright ©2011 Peng et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 10 June 2011
                : 28 July 2011
                Categories
                Research

                Cell biology
                Cell biology

                Comments

                Comment on this article