11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Multifunctional Pattern-Generating Circuits

      1 , 2
      Annual Review of Neuroscience
      Annual Reviews

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The ability of distinct anatomical circuits to generate multiple behavioral patterns is widespread among vertebrate and invertebrate species. These multifunctional neuronal circuits are the result of multistable neural dynamics and modular organization. The evidence suggests multifunctional circuits can be classified by distinct architectures, yet the activity patterns of individual neurons involved in more than one behavior can vary dramatically. Several mechanisms, including sensory input, the parallel activity of projection neurons, neuromodulation, and biomechanics, are responsible for the switching between patterns. Recent advances in both analytical and experimental tools have aided the study of these complex circuits.

          Related collections

          Most cited references167

          • Record: found
          • Abstract: found
          • Article: not found

          Combinations of muscle synergies in the construction of a natural motor behavior.

          A central issue in motor control is how the central nervous system generates the muscle activity patterns necessary to achieve a variety of behavioral goals. The many degrees of freedom of the musculoskeletal apparatus provide great flexibility but make the control problem extremely complex. Muscle synergies--coherent activations, in space or time, of a group of muscles--have been proposed as building blocks that could simplify the construction of motor behaviors. To evaluate this hypothesis, we developed a new method to extract invariant spatiotemporal components from the simultaneous recordings of the activity of many muscles. We used this technique to analyze the muscle patterns of intact and unrestrained frogs during kicking, a natural defensive behavior. Here we show that combinations of three time-varying muscle synergies underlie the variety of muscle patterns required to kick in different directions, that the recruitment of these synergies is related to movement kinematics, and that there are similarities among the synergies extracted from different behaviors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            From swimming to walking with a salamander robot driven by a spinal cord model.

            The transition from aquatic to terrestrial locomotion was a key development in vertebrate evolution. We present a spinal cord model and its implementation in an amphibious salamander robot that demonstrates how a primitive neural circuit for swimming can be extended by phylogenetically more recent limb oscillatory centers to explain the ability of salamanders to switch between swimming and walking. The model suggests neural mechanisms for modulation of velocity, direction, and type of gait that are relevant for all tetrapods. It predicts that limb oscillatory centers have lower intrinsic frequencies than body oscillatory centers, and we present biological data supporting this.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biological pattern generation: the cellular and computational logic of networks in motion.

              In 1900, Ramón y Cajal advanced the neuron doctrine, defining the neuron as the fundamental signaling unit of the nervous system. Over a century later, neurobiologists address the circuit doctrine: the logic of the core units of neuronal circuitry that control animal behavior. These are circuits that can be called into action for perceptual, conceptual, and motor tasks, and we now need to understand whether there are coherent and overriding principles that govern the design and function of these modules. The discovery of central motor programs has provided crucial insight into the logic of one prototypic set of neural circuits: those that generate motor patterns. In this review, I discuss the mode of operation of these pattern generator networks and consider the neural mechanisms through which they are selected and activated. In addition, I will outline the utility of computational models in analysis of the dynamic actions of these motor networks.
                Bookmark

                Author and article information

                Journal
                Annual Review of Neuroscience
                Annu. Rev. Neurosci.
                Annual Reviews
                0147-006X
                1545-4126
                July 2008
                July 2008
                : 31
                : 1
                : 271-294
                Affiliations
                [1 ]Department of Biomedical Optics, Max Planck Institute for Medical Research, Heidelberg, 69120 Germany; email:
                [2 ]Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093-0357; email:
                Article
                10.1146/annurev.neuro.31.060407.125552
                18558856
                7d589d9e-d9b9-4aed-a54c-1110884f2344
                © 2008
                History

                Comments

                Comment on this article