32
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Assessment of the Public Health Threats Posed by Vector-Borne Disease in the United Kingdom (UK)

      other

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In recent years, the known distribution of vector-borne diseases in Europe has changed, with much new information also available now on the status of vectors in the United Kingdom (UK). For example, in 2016, the UK reported their first detection of the non-native mosquito Aedes albopictus, which is a known vector for dengue and chikungunya virus. In 2010, Culex modestus, a principal mosquito vector for West Nile virus was detected in large numbers in the Thames estuary. For tick-borne diseases, data on the changing distribution of the Lyme borreliosis tick vector, Ixodes ricinus, has recently been published, at a time when there has been an increase in the numbers of reported human cases of Lyme disease. This paper brings together the latest surveillance data and pertinent research on vector-borne disease in the UK, and its relevance to public health. It highlights the need for continued vector surveillance systems to monitor our native mosquito and tick fauna, as well as the need to expand surveillance for invasive species. It illustrates the importance of maintaining surveillance capacity that is sufficient to ensure accurate and timely disease risk assessment to help mitigate the UK’s changing emerging infectious disease risks, especially in a time of climatic and environmental change and increasing global connectivity.

          Related collections

          Most cited references105

          • Record: found
          • Abstract: found
          • Article: not found

          Impact of climate change on global malaria distribution.

          Malaria is an important disease that has a global distribution and significant health burden. The spatial limits of its distribution and seasonal activity are sensitive to climate factors, as well as the local capacity to control the disease. Malaria is also one of the few health outcomes that has been modeled by more than one research group and can therefore facilitate the first model intercomparison for health impacts under a future with climate change. We used bias-corrected temperature and rainfall simulations from the Coupled Model Intercomparison Project Phase 5 climate models to compare the metrics of five statistical and dynamical malaria impact models for three future time periods (2030s, 2050s, and 2080s). We evaluated three malaria outcome metrics at global and regional levels: climate suitability, additional population at risk and additional person-months at risk across the model outputs. The malaria projections were based on five different global climate models, each run under four emission scenarios (Representative Concentration Pathways, RCPs) and a single population projection. We also investigated the modeling uncertainty associated with future projections of populations at risk for malaria owing to climate change. Our findings show an overall global net increase in climate suitability and a net increase in the population at risk, but with large uncertainties. The model outputs indicate a net increase in the annual person-months at risk when comparing from RCP2.6 to RCP8.5 from the 2050s to the 2080s. The malaria outcome metrics were highly sensitive to the choice of malaria impact model, especially over the epidemic fringes of the malaria distribution.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Declining malaria, rising of dengue and Zika virus: insights for mosquito vector control.

            The fight against mosquito-borne diseases is a challenge of huge public health importance. To our mind, 2015 was an extraordinary year for malaria control, due to three hot news: the Nobel Prize to Youyou Tu for the discovery of artemisinin, the development of the first vaccine against Plasmodium falciparum malaria [i.e. RTS,S/AS01 (RTS,S)], and the fall of malaria infection rates worldwide, with special reference to sub-Saharan Africa. However, there are major challenges that still deserve attention, in order to boost malaria prevention and control. Indeed, parasite strains resistant to artemisinin have been detected, and RTS,S vaccine does not offer protection against Plasmodium vivax malaria, which predominates in many countries outside of Africa. Furthermore, the recent outbreaks of Zika virus infections, occurring in South America, Central America and the Caribbean, represent the most recent of four arrivals of important arboviruses in the Western Hemisphere, over the last 20 years. Zika virus follows dengue (which slyly arrived in the hemisphere over decades and became more aggressive in the 1990s), West Nile virus (emerged in 1999) and chikungunya (emerged in 2013). Notably, there are no specific treatments for these arboviruses. The emerging scenario highlights that the effective and eco-friendly control of mosquito vectors, with special reference to highly invasive species such as Aedes aegypti and Aedes albopictus, is crucial. The concrete potential of screening plant species as sources of metabolites for parasitological purposes is worthy of attention, as elucidated by the Y. Tu's example. Notably, plant-borne molecules are often effective at few parts per million against Aedes, Ochlerotatus, Anopheles and Culex young instars, can be used for the rapid synthesis of mosquitocidal nanoformulations and even employed to prepare cheap repellents with low human toxicity. In addition, behaviour-based control tools relying to the employ of sound traps and the manipulation of swarming behaviour (i.e. "lure and kill" approach) are discussed. The importance of further research on the chemical cues routing mosquito swarming and mating dynamics is highlighted. Besides radiation, transgenic and symbiont-based mosquito control approaches, an effective option may be the employ of biological control agents of mosquito young instars, in the presence of ultra-low quantities of nanoformulated botanicals, which boost their predation rates.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Suitability of European climate for the Asian tiger mosquito Aedes albopictus: recent trends and future scenarios

              The Asian tiger mosquito (Aedes albopictus) is an invasive species that has the potential to transmit infectious diseases such as dengue and chikungunya fever. Using high-resolution observations and regional climate model scenarios for the future, we investigated the suitability of Europe for A. albopictus using both recent climate and future climate conditions. The results show that southern France, northern Italy, the northern coast of Spain, the eastern coast of the Adriatic Sea and western Turkey were climatically suitable areas for the establishment of the mosquito during the 1960–1980s. Over the last two decades, climate conditions have become more suitable for the mosquito over central northwestern Europe (Benelux, western Germany) and the Balkans, while they have become less suitable over southern Spain. Similar trends are likely in the future, with an increased risk simulated over northern Europe and slightly decreased risk over southern Europe. These distribution shifts are related to wetter and warmer conditions favouring the overwintering of A. albopictus in the north, and drier and warmer summers that might limit its southward expansion.
                Bookmark

                Author and article information

                Journal
                Int J Environ Res Public Health
                Int J Environ Res Public Health
                ijerph
                International Journal of Environmental Research and Public Health
                MDPI
                1661-7827
                1660-4601
                29 September 2018
                October 2018
                : 15
                : 10
                : 2145
                Affiliations
                [1 ]Medical Entomology Group, Public Health England, Emergency Response Department, Porton Down, Salisbury, Wiltshire SP4 0JG, UK; kayleigh.hansford@ 123456phe.gov.uk (K.M.H.); alexander.vaux@ 123456phe.gov.uk (A.G.C.V.); ben.cull@ 123456phe.gov.uk (B.C.); emma.gillingham@ 123456phe.gov.uk (E.G.); steve.leach@ 123456phe.gov.uk (S.L.)
                [2 ]Health Protection Research Unit in Environmental Change and Health, Porton Down, Salisbury, Wiltshire SP4 0JG, UK
                [3 ]Health Protection Research Unit in Emerging and Zoonotic Infections, Porton Down, Salisbury, Wiltshire SP4 0JG, UK
                Author notes
                Author information
                https://orcid.org/0000-0003-2463-5660
                https://orcid.org/0000-0002-0080-8590
                Article
                ijerph-15-02145
                10.3390/ijerph15102145
                6210260
                30274268
                7d6ac19c-24c9-4adc-921a-3e9ab734079b
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 31 August 2018
                : 25 September 2018
                Categories
                Opinion

                Public health
                vector-borne disease,uk,mosquito,tick,lyme,arbovirus
                Public health
                vector-borne disease, uk, mosquito, tick, lyme, arbovirus

                Comments

                Comment on this article