2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of Propranolol on Bone, White Adipose Tissue, and Bone Marrow Adipose Tissue in Mice Housed at Room Temperature or Thermoneutral Temperature

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Growing female mice housed at room temperature (22°C) weigh the same but differ in body composition compared to mice housed at thermoneutrality (32°C). Specifically, mice housed at room temperature have lower levels of white adipose tissue (WAT). Additionally, bone marrow adipose tissue (bMAT) and cancellous bone volume fraction in distal femur metaphysis are lower in room temperature-housed mice. The metabolic changes induced by sub-thermoneutral housing are associated with lower leptin levels in serum and higher levels of Ucp1 gene expression in brown adipose tissue. Although the precise mechanisms mediating adaptation to sub-thermoneutral temperature stress remain to be elucidated, there is evidence that increased sympathetic nervous system activity acting via β-adrenergic receptors plays an important role. We therefore evaluated the effect of the non-specific β-blocker propranolol (primarily β 1 and β 2 antagonist) on body composition, femur microarchitecture, and bMAT in growing female C57BL/6 mice housed at either room temperature or thermoneutral temperature. As anticipated, cancellous bone volume fraction, WAT and bMAT were lower in mice housed at room temperature. Propranolol had small but significant effects on bone microarchitecture (increased trabecular number and decreased trabecular spacing), but did not attenuate premature bone loss induced by room temperature housing. In contrast, propranolol treatment prevented housing temperature-associated differences in WAT and bMAT. To gain additional insight, we evaluated a panel of genes in tibia, using an adipogenesis PCR array. Housing temperature and treatment with propranolol had exclusive as well as shared effects on gene expression. Of particular interest was the finding that room temperature housing reduced, whereas propranolol increased, expression of the gene for acetyl-CoA carboxylase ( Acacb), the rate-limiting step for fatty acid synthesis and a key regulator of β-oxidation. Taken together, these findings provide evidence that increased activation of β 1 and/or β 2 receptors contributes to reduced bMAT by regulating adipocyte metabolism, but that this pathway is unlikely to be responsible for premature cancellous bone loss in room temperature-housed mice.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese.

          The mitochondrial uncoupling protein (UCP) in the mitochondrial inner membrane of mammalian brown adipose tissue generates heat by uncoupling oxidative phosphorylation. This process protects against cold and regulates energy balance. Manipulation of thermogenesis could be an effective strategy against obesity. Here we determine the role of UCP in the regulation of body mass by targeted inactivation of the gene encoding it. We find that UCP-deficient mice consume less oxygen after treatment with a beta3-adrenergic-receptor agonist and that they are sensitive to cold, indicating that their thermoregulation is defective. However, this deficiency caused neither hyperphagia nor obesity in mice fed on either a standard or a high-fat diet. We propose that the loss of UCP may be compensated by UCP2, a newly discovered homologue of UCP; this gene is ubiquitously expressed and is induced in the brown fat of UCP-deficient mice.
            • Record: found
            • Abstract: found
            • Article: not found

            Age-related changes in trabecular architecture differ in female and male C57BL/6J mice.

            We used microCT and histomorphometry to assess age-related changes in bone architecture in male and female C57BL/6J mice. Deterioration in vertebral and femoral trabecular microarchitecture begins early, continues throughout life, is more pronounced at the femoral metaphysis than in the vertebrae, and is greater in females than males. Despite widespread use of mice in the study of musculoskeletal disease, the age-related changes in murine bone structure and the relationship to whole body BMD changes are not well characterized. Thus, we assessed age-related changes in body composition, whole body BMD, and trabecular and cortical microarchitecture at axial and appendicular sites in mice. Peripheral DXA was used to assess body composition and whole body BMD in vivo, and microCT and histomorphometry were used to measure trabecular and cortical architecture in excised femora, tibia, and vertebrae in male and female C57BL/6J mice at eight time-points between 1 and 20 mo of age (n = 6-9/group). Body weight and total body BMD increased with age in male and female, with a marked increase in body fat between 6 and 12 mo of age. In contrast, trabecular bone volume (BV/TV) was greatest at 6-8 wk of age and declined steadily thereafter, particularly in the metaphyseal region of long bones. Age-related declines in BV/TV were greater in female than male. Trabecular bone loss was characterized by a rapid decrease in trabecular number between 2 and 6 mo of age, and a more gradual decline thereafter, whereas trabecular thickness increased slowly over life. Cortical thickness increased markedly from 1 to 3 mo of age and was maintained or slightly decreased thereafter. In C57BL/6J mice, despite increasing body weight and total body BMD, age-related declines in vertebral and distal femoral trabecular bone volume occur early and continue throughout life and are more pronounced in females than males. Awareness of these age-related changed in bone morphology are critical for interpreting the skeletal response to pharmacologic interventions or genetic manipulation in mice.
              • Record: found
              • Abstract: found
              • Article: not found

              Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis.

              Aging of the human skeleton is characterized by decreased bone formation and bone mass and these changes are more pronounced in patients with osteoporosis. As osteoblasts and adipocytes share a common precursor cell in the bone marrow, we hypothesized that decreased bone formation observed during aging and in patients with osteoporosis is the result of enhanced adipognesis versus osteoblastogenesis from precursor cells in the bone marrow. Thus, we examined iliac crest bone biopsies obtained from 53 healthy normal individuals (age 30-100) and 26 patients with osteoporosis (age 52-92). Adipose tissue volume fraction (AV), hematopoietic tissue volume fraction (HV) and trabecular bone volume fraction (BV) were quantitated as a percentage of total tissue volume fraction (TV) (calculated as BV + AV + HV) using the point-counting method. We found an age-related increase in AV/TV (r = 0.53, P < 0.001, n = 53) and an age-related decline in BV/TV (r = -0.46, P < 0.001, n = 53) as well as in the HV/TV (r -0.318, P < 0.05, n = 53). There was an age-related inverse correlation between BV/TV and AV/TV (r = -0.58, P < 0.001). No significant correlation between the AV/TV and the body mass index (r = 0.06, n.s., n = 52) was detectable. Compared with age-matched controls, patients with osteoporosis exhibited an increased AV/TV (P < 0.05) and decreased BV/TV (P < 0.05) but no statistically significant difference in HV/TV. Our data support the hypothesis that with aging and in osteoporosis an enhanced adipogenesis is observed in the bone marrow and that these changes are inversely correlated to decreased trabecular bone volume. The cellular and molecular mechanisms mediating these changes remain to be determined.

                Author and article information

                Contributors
                Journal
                Front Endocrinol (Lausanne)
                Front Endocrinol (Lausanne)
                Front. Endocrinol.
                Frontiers in Endocrinology
                Frontiers Media S.A.
                1664-2392
                17 March 2020
                2020
                : 11
                : 117
                Affiliations
                [1] 1Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University , Corvallis, OR, United States
                [2] 2Center for Healthy Aging Research, Oregon State University , Corvallis, OR, United States
                [3] 3Biostatistics Program, School of Biological and Population Health Sciences, Oregon State University , Corvallis, OR, United States
                Author notes

                Edited by: Nathalie Bravenboer, VU University Medical Center, Netherlands

                Reviewed by: Erica L. Scheller, Washington University in St. Louis, United States; Ormond A. MacDougald, University of Michigan, United States

                *Correspondence: Urszula T. Iwaniec urszula.iwaniec@ 123456oregonstate.edu

                This article was submitted to Bone Research, a section of the journal Frontiers in Endocrinology

                Article
                10.3389/fendo.2020.00117
                7089918
                32256446
                7d8a6d3c-9e1e-4dee-b101-8a1041b9f7f7
                Copyright © 2020 Turner, Philbrick, Wong, Gamboa, Branscum and Iwaniec.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 11 June 2019
                : 21 February 2020
                Page count
                Figures: 6, Tables: 0, Equations: 0, References: 84, Pages: 13, Words: 8006
                Funding
                Funded by: National Institute of Arthritis and Musculoskeletal and Skin Diseases 10.13039/100000069
                Funded by: U.S. Department of Agriculture 10.13039/100000199
                Funded by: National Aeronautics and Space Administration 10.13039/100000104
                Categories
                Endocrinology
                Original Research

                Endocrinology & Diabetes
                β-adrenergic,non-shivering thermogenesis,thermoneutral,cancellous bone,premature bone loss

                Comments

                Comment on this article

                Related Documents Log