1
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MAcroecological Framework for Invasive Aliens (MAFIA): disentangling large-scale context dependence in biological invasions

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Macroecology is the study of patterns, and the processes that determine those patterns, in the distribution and abundance of organisms at large scales, whether they be spatial (from hundreds of kilometres to global), temporal (from decades to centuries), and organismal (numbers of species or higher taxa). In the context of invasion ecology, macroecological studies include, for example, analyses of the richness, diversity, distribution, and abundance of alien species in regional floras and faunas, spatio-temporal dynamics of alien species across regions, and cross-taxonomic analyses of species traits among comparable native and alien species pools. However, macroecological studies aiming to explain and predict plant and animal naturalisations and invasions, and the resulting impacts, have, to date, rarely considered the joint effects of species traits, environment, and socioeconomic characteristics. To address this, we present the MAcroecological Framework for Invasive Aliens (MAFIA). The MAFIA explains the invasion phenomenon using three interacting classes of factors – alien species traits, location characteristics, and factors related to introduction events – and explicitly maps these interactions onto the invasion sequence from transport to naturalisation to invasion. The framework therefore helps both to identify how anthropogenic effects interact with species traits and environmental characteristics to determine observed patterns in alien distribution, abundance, and richness; and to clarify why neglecting anthropogenic effects can generate spurious conclusions. Event-related factors include propagule pressure, colonisation pressure, and residence time that are important for mediating the outcome of invasion processes. However, because of context dependence, they can bias analyses, for example those that seek to elucidate the role of alien species traits. In the same vein, failure to recognise and explicitly incorporate interactions among the main factors impedes our understanding of which macroecological invasion patterns are shaped by the environment, and of the importance of interactions between the species and their environment. The MAFIA is based largely on insights from studies of plants and birds, but we believe it can be applied to all taxa, and hope that it will stimulate comparative research on other groups and environments. By making the biases in macroecological analyses of biological invasions explicit, the MAFIA offers an opportunity to guide assessments of the context dependence of invasions at broad geographical scales.

          Related collections

          Most cited references 255

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          No saturation in the accumulation of alien species worldwide

          Although research on human-mediated exchanges of species has substantially intensified during the last centuries, we know surprisingly little about temporal dynamics of alien species accumulations across regions and taxa. Using a novel database of 45,813 first records of 16,926 established alien species, we show that the annual rate of first records worldwide has increased during the last 200 years, with 37% of all first records reported most recently (1970–2014). Inter-continental and inter-taxonomic variation can be largely attributed to the diaspora of European settlers in the nineteenth century and to the acceleration in trade in the twentieth century. For all taxonomic groups, the increase in numbers of alien species does not show any sign of saturation and most taxa even show increases in the rate of first records over time. This highlights that past efforts to mitigate invasions have not been effective enough to keep up with increasing globalization.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A proposed unified framework for biological invasions.

            There has been a dramatic growth in research on biological invasions over the past 20 years, but a mature understanding of the field has been hampered because invasion biologists concerned with different taxa and different environments have largely adopted different model frameworks for the invasion process, resulting in a confusing range of concepts, terms and definitions. In this review, we propose a unified framework for biological invasions that reconciles and integrates the key features of the most commonly used invasion frameworks into a single conceptual model that can be applied to all human-mediated invasions. The unified framework combines previous stage-based and barrier models, and provides a terminology and categorisation for populations at different points in the invasion process. Copyright © 2011 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              TRY – a global database of plant traits

              Plant traits – the morphological, anatomical, physiological, biochemical and phenological characteristics of plants and their organs – determine how primary producers respond to environmental factors, affect other trophic levels, influence ecosystem processes and services and provide a link from species richness to ecosystem functional diversity. Trait data thus represent the raw material for a wide range of research from evolutionary biology, community and functional ecology to biogeography. Here we present the global database initiative named TRY, which has united a wide range of the plant trait research community worldwide and gained an unprecedented buy-in of trait data: so far 93 trait databases have been contributed. The data repository currently contains almost three million trait entries for 69 000 out of the world's 300 000 plant species, with a focus on 52 groups of traits characterizing the vegetative and regeneration stages of the plant life cycle, including growth, dispersal, establishment and persistence. A first data analysis shows that most plant traits are approximately log-normally distributed, with widely differing ranges of variation across traits. Most trait variation is between species (interspecific), but significant intraspecific variation is also documented, up to 40% of the overall variation. Plant functional types (PFTs), as commonly used in vegetation models, capture a substantial fraction of the observed variation – but for several traits most variation occurs within PFTs, up to 75% of the overall variation. In the context of vegetation models these traits would better be represented by state variables rather than fixed parameter values. The improved availability of plant trait data in the unified global database is expected to support a paradigm shift from species to trait-based ecology, offer new opportunities for synthetic plant trait research and enable a more realistic and empirically grounded representation of terrestrial vegetation in Earth system models.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                NeoBiota
                NB
                Pensoft Publishers
                1314-2488
                1619-0033
                October 15 2020
                October 15 2020
                : 62
                : 407-461
                Article
                10.3897/neobiota.62.52787
                © 2020

                Comments

                Comment on this article