10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The APOSTLE simulations: solutions to the Local Group's cosmic puzzles

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Local Group of galaxies offer some of the most discriminating tests of models of cosmic structure formation. For example, observations of the Milky Way (MW) and Andromeda satellite populations appear to be in disagreement with N-body simulations of the "Lambda Cold Dark Matter" ({\Lambda}CDM) model: there are far fewer satellite galaxies than substructures in cold dark matter halos (the "missing satellites" problem); dwarf galaxies seem to avoid the most massive substructures (the "too-big-to-fail" problem); and the brightest satellites appear to orbit their host galaxies on a thin plane (the "planes of satellites" problem). Here we present results from APOSTLE (A Project Of Simulating The Local Environment), a suite of cosmological hydrodynamic simulations of twelve volumes selected to match the kinematics of the Local Group (LG) members. Applying the Eagle code to the LG environment, we find that our simulations match the observed abundance of LG galaxies, including the satellite galaxies of the MW and Andromeda. Due to changes to the structure of halos and the evolution in the LG environment, the simulations reproduce the observed relation between stellar mass and velocity dispersion of individual dwarf spheroidal galaxies without necessitating the formation of cores in their dark matter profiles. Satellite systems form with a range of spatial anisotropies, including one similar to that of the MW, confirming that such a configuration is not unexpected in {\Lambda}CDM. Finally, based on the observed velocity dispersion, size, and stellar mass, we provide new estimates of the maximum circular velocity for the halos of nine MW dwarf spheroidals.

          Related collections

          Author and article information

          Journal
          2015-11-03
          Article
          10.1093/mnras/stw145
          1511.01098
          7d962afe-63bf-42c4-9ef6-b8d5891179ad

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          15 pages, submitted to MNRAS. arXiv admin note: text overlap with arXiv:1412.2748
          astro-ph.GA astro-ph.CO

          Cosmology & Extragalactic astrophysics,Galaxy astrophysics
          Cosmology & Extragalactic astrophysics, Galaxy astrophysics

          Comments

          Comment on this article