18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Decreased lipolytic activity in tissues during infectious and inflammatory stress.

      Nutrition (Burbank, Los Angeles County, Calif.)
      Alanine, blood, Animals, Bacterial Infections, metabolism, Blood Proteins, Cholesterol, Gram-Negative Bacterial Infections, Gram-Positive Bacterial Infections, Inflammation, chemically induced, Ketone Bodies, Lactates, Lactic Acid, Lipase, Lipolysis, Lipoprotein Lipase, Male, Pyruvates, Pyruvic Acid, Rats, Serum Albumin, Triglycerides, Turpentine

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The clearance rate of endogenous and exogenous circulating lipids during the septic or inflammatory state remains a controversial subject. Thus, we have developed rat models of gram-negative and gram-positive sepsis and of sterile inflammation to study this problem. In addition to the febrile response, these stresses induced some of the following metabolic changes in the blood: decreased total protein, albumin, and ketone body levels and increased lactate, pyruvate, alanine, cholesterol, and triacylglycerol levels. The activities of heart, diaphragm, and adipose tissue lipoprotein lipase and of hepatic lipase decreased to differing extents depending on whether the enzyme substrate was a long-chain or a medium- and long-chain triglyceride-based emulsion. However, the latter emulsion was always hydrolyzed faster than the former. This observation suggests that, during infection/inflammation, the medium- and long-chain triglyceride-based emulsion would be cleared more quickly, would induce less hypertriglyceridemia, and would thus deliver lipid energy more rapidly than a traditional long-chain triglyceride-based emulsion.

          Related collections

          Author and article information

          Comments

          Comment on this article