35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Red Wolf ( Canis rufus) Recovery: A Review with Suggestions for Future Research

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Simple Summary

          Once widespread in the Eastern United States, early 20th century predator-control programs reduced red wolves to a remnant population by the 1970s. The U.S. Fish and Wildlife Service, through the Red Wolf Recovery Program, restored red wolves to northeastern North Carolina in 1987. After 25 years of restoration efforts, issues of hybridization with coyotes, inbreeding, and human-caused mortality continue to hamper red wolf recovery. To understand how these issues influence recovery efforts, we examine the history of red wolf restoration and its challenges. We then formulate areas of research that are of direct relevance to the restoration of red wolves.

          Abstract

          By the 1970s, government-supported eradication campaigns reduced red wolves to a remnant population of less than 100 individuals on the southern border of Texas and Louisiana. Restoration efforts in the region were deemed unpromising because of predator-control programs and hybridization with coyotes. The U.S. Fish and Wildlife Service (USFWS) removed the last remaining red wolves from the wild and placed them in a captive-breeding program. In 1980, the USFWS declared red wolves extinct in the wild. During 1987, the USFWS, through the Red Wolf Recovery Program, reintroduced red wolves into northeastern North Carolina. Although restoration efforts have established a population of approximately 70–80 red wolves in the wild, issues of hybridization with coyotes, inbreeding, and human-caused mortality continue to hamper red wolf recovery. We explore these three challenges and, within each challenge, we illustrate how research can be used to resolve problems associated with red wolf-coyote interactions, effects of inbreeding, and demographic responses to human-caused mortality. We hope this illustrates the utility of research to advance restoration of red wolves.

          Related collections

          Most cited references121

          • Record: found
          • Abstract: found
          • Article: not found

          The genetics of inbreeding depression.

          Inbreeding depression - the reduced survival and fertility of offspring of related individuals - occurs in wild animal and plant populations as well as in humans, indicating that genetic variation in fitness traits exists in natural populations. Inbreeding depression is important in the evolution of outcrossing mating systems and, because intercrossing inbred strains improves yield (heterosis), which is important in crop breeding, the genetic basis of these effects has been debated since the early twentieth century. Classical genetic studies and modern molecular evolutionary approaches now suggest that inbreeding depression and heterosis are predominantly caused by the presence of recessive deleterious mutations in populations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ecology and the origin of species.

            The ecological hypothesis of speciation is that reproductive isolation evolves ultimately as a consequence of divergent natural selection on traits between environments. Ecological speciation is general and might occur in allopatry or sympatry, involve many agents of natural selection, and result from a combination of adaptive processes. The main difficulty of the ecological hypothesis has been the scarcity of examples from nature, but several potential cases have recently emerged. I review the mechanisms that give rise to new species by divergent selection, compare ecological speciation with its alternatives, summarize recent tests in nature, and highlight areas requiring research.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phenotypic plasticity in the interactions and evolution of species.

              When individuals of two species interact, they can adjust their phenotypes in response to their respective partner, be they antagonists or mutualists. The reciprocal phenotypic change between individuals of interacting species can reflect an evolutionary response to spatial and temporal variation in species interactions and ecologically result in the structuring of food chains. The evolution of adaptive phenotypic plasticity has led to the success of organisms in novel habitats, and potentially contributes to genetic differentiation and speciation. Taken together, phenotypic responses in species interactions represent modifications that can lead to reciprocal change in ecological time, altered community patterns, and expanded evolutionary potential of species.
                Bookmark

                Author and article information

                Journal
                Animals (Basel)
                Animals (Basel)
                animals
                Animals : an Open Access Journal from MDPI
                MDPI
                2076-2615
                13 August 2013
                September 2013
                : 3
                : 3
                : 722-744
                Affiliations
                [1 ]Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA; E-Mail: mchamberlain@ 123456warnell.uga.edu
                [2 ]Red Wolf Recovery Program, United States Fish and Wildlife Service, P.O. Box 1969, Manteo, NC 27954, USA; E-Mail: david_rabon@ 123456fws.gov
                Author notes
                [* ]Author to whom correspondence should be addressed; E-Mail: jhinton@ 123456uga.edu .
                Article
                animals-03-00722
                10.3390/ani3030722
                4494459
                26479530
                7d9b01a1-aaf3-40b3-80c4-cc0f321174b5
                © 2013 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 24 July 2013
                : 06 August 2013
                : 07 August 2013
                Categories
                Review

                canis rufus,canis latrans,conservation,coyote,demographics,hybridization,inbreeding,red wolf

                Comments

                Comment on this article