3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bayesian Estimation of Correlation between Measures of Blood Pressure Indices, Aerobic Capacity and Resting Heart Rate Variability Using Markov Chain Monte Carlo Simulation and 95% High Density Interval in Female School Teachers

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Several explanations regarding the disparity observed in the literature with regard to heart rate variability (HRV) and its association with performance parameters have been proposed: the time of day when the recording was conducted, the condition (i.e., rest, active, post activity) and the mathematical and physiological relationships that could have influenced the results. A notable observation about early studies is that they all followed the frequentist approach to data analyses. Therefore, in an attempt to explain the disparity observed in the literature, the primary purpose of this study was to estimate the association between measures of HRV indices, aerobic performance parameters and blood pressure indices using the Bayesian estimation of correlation on simulated data using Markov Chain Monte Carlo (MCMC) and the equal probability of the 95% high density interval (95% HDI). Methods: The within-subjects with a one-group pretest experimental design was chosen to investigate the relationship between baseline measures of HRV (rest; independent variable), myocardial work (rate–pressure product (RPP)), mean arterial pressure (MAP) and aerobic performance parameters. The study participants were eight local female schoolteachers aged 54.1 ± 6.5 years (mean ± SD), with a body mass of 70.6 ± 11.5 kg and a height of 164.5 ± 6.5 cm. Their HRV data were analyzed in R package, and the Bayesian estimation of correlation was calculated employing the Bayesian hierarchical model that uses MCMC simulation integrated in the JAGS package. Results: The Bayesian estimation of correlation using MCMC simulation reproduced and supported the findings reported regarding norms and the within-HRV-indices associations. The results of the Bayesian estimation showed a possible association (regardless of the strength) between pNN50% and MAP ( rho = 0.671; 95% HDI = 0.928–0.004), MeanRR (ms) and RPP ( rho = −0.68; 95% HDI = −0.064–−0.935), SDNN (ms) and RPP ( rho = 0.672; 95% HDI = 0.918–0.001), LF (ms 2) and RPP ( rho = 0.733; 95% HDI = 0.935–0.118) and SD2 and RPP ( rho = 0.692; 95% HDI = 0.939–0.055). Conclusions: The Bayesian estimation of correlation with 95% HDI on MCMC simulated data is a new technique for data analysis in sport science and seems to provide a more robust approach to allocating credibility through a meaningful mathematical model. However, the 95% HDI found in this study, accompanied by the theoretical explanations regarding the dynamics between the parasympathetic nervous system and the sympathetic nervous system in relation to different recording conditions (supine, reactivation, rest), recording systems, time of day (morning, evening, sleep etc.) and age of participants, suggests that the association between measures of HRV indices and aerobic performance parameters has yet to be explicated.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          An Overview of Heart Rate Variability Metrics and Norms

          Healthy biological systems exhibit complex patterns of variability that can be described by mathematical chaos. Heart rate variability (HRV) consists of changes in the time intervals between consecutive heartbeats called interbeat intervals (IBIs). A healthy heart is not a metronome. The oscillations of a healthy heart are complex and constantly changing, which allow the cardiovascular system to rapidly adjust to sudden physical and psychological challenges to homeostasis. This article briefly reviews current perspectives on the mechanisms that generate 24 h, short-term (~5 min), and ultra-short-term (<5 min) HRV, the importance of HRV, and its implications for health and performance. The authors provide an overview of widely-used HRV time-domain, frequency-domain, and non-linear metrics. Time-domain indices quantify the amount of HRV observed during monitoring periods that may range from ~2 min to 24 h. Frequency-domain values calculate the absolute or relative amount of signal energy within component bands. Non-linear measurements quantify the unpredictability and complexity of a series of IBIs. The authors survey published normative values for clinical, healthy, and optimal performance populations. They stress the importance of measurement context, including recording period length, subject age, and sex, on baseline HRV values. They caution that 24 h, short-term, and ultra-short-term normative values are not interchangeable. They encourage professionals to supplement published norms with findings from their own specialized populations. Finally, the authors provide an overview of HRV assessment strategies for clinical and optimal performance interventions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Heart rate variability: a review.

            Heart rate variability (HRV) is a reliable reflection of the many physiological factors modulating the normal rhythm of the heart. In fact, they provide a powerful means of observing the interplay between the sympathetic and parasympathetic nervous systems. It shows that the structure generating the signal is not only simply linear, but also involves nonlinear contributions. Heart rate (HR) is a nonstationary signal; its variation may contain indicators of current disease, or warnings about impending cardiac diseases. The indicators may be present at all times or may occur at random-during certain intervals of the day. It is strenuous and time consuming to study and pinpoint abnormalities in voluminous data collected over several hours. Hence, HR variation analysis (instantaneous HR against time axis) has become a popular noninvasive tool for assessing the activities of the autonomic nervous system. Computer based analytical tools for in-depth study of data over daylong intervals can be very useful in diagnostics. Therefore, the HRV signal parameters, extracted and analyzed using computers, are highly useful in diagnostics. In this paper, we have discussed the various applications of HRV and different linear, frequency domain, wavelet domain, nonlinear techniques used for the analysis of the HRV.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology.

                Bookmark

                Author and article information

                Journal
                Int J Environ Res Public Health
                Int J Environ Res Public Health
                ijerph
                International Journal of Environmental Research and Public Health
                MDPI
                1661-7827
                1660-4601
                16 September 2020
                September 2020
                : 17
                : 18
                : 6750
                Affiliations
                Department of Education and Sports Science, University of Stavanger, 4036 Stavanger, Norway; shaher.shalfawi@ 123456uis.no
                Author information
                https://orcid.org/0000-0002-5164-0230
                Article
                ijerph-17-06750
                10.3390/ijerph17186750
                7558932
                32947985
                7da337ed-6fa4-4fcf-8b21-f9cc380ea951
                © 2020 by the author.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 08 July 2020
                : 13 September 2020
                Categories
                Article

                Public health
                psychophysiology health,rate-pressure product,mean arterial blood pressure,mcmc,data simulation

                Comments

                Comment on this article