3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      YOLO-HR: Improved YOLOv5 for Object Detection in High-Resolution Optical Remote Sensing Images

      , , , , ,
      Remote Sensing
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Object detection is essential to the interpretation of optical remote sensing images and can serve as a foundation for research into additional visual tasks that utilize remote sensing. However, the object detection network currently employed in optical remote sensing images underutilizes the output of the feature pyramid, so there remains potential for an improved detection. At present, a suitable balance between the detection efficiency and detection effect is difficult to attain. This paper proposes an enhanced YOLOv5 algorithm for object detection in high-resolution optical remote sensing images, utilizing multiple layers of the feature pyramid, a multi-detection-head strategy, and a hybrid attention module to improve the effect of object-detection networks for use with optical remote sensing images. According to the SIMD dataset, the mAP of the proposed method was 2.2% better than YOLOv5 and 8.48% better than YOLOX, achieving an improved balance between the detection effect and speed.

          Related collections

          Most cited references72

          • Record: found
          • Abstract: found
          • Article: not found

          Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.

          State-of-the-art object detection networks depend on region proposal algorithms to hypothesize object locations. Advances like SPPnet [1] and Fast R-CNN [2] have reduced the running time of these detection networks, exposing region proposal computation as a bottleneck. In this work, we introduce a Region Proposal Network (RPN) that shares full-image convolutional features with the detection network, thus enabling nearly cost-free region proposals. An RPN is a fully convolutional network that simultaneously predicts object bounds and objectness scores at each position. The RPN is trained end-to-end to generate high-quality region proposals, which are used by Fast R-CNN for detection. We further merge RPN and Fast R-CNN into a single network by sharing their convolutional features-using the recently popular terminology of neural networks with 'attention' mechanisms, the RPN component tells the unified network where to look. For the very deep VGG-16 model [3], our detection system has a frame rate of 5fps (including all steps) on a GPU, while achieving state-of-the-art object detection accuracy on PASCAL VOC 2007, 2012, and MS COCO datasets with only 300 proposals per image. In ILSVRC and COCO 2015 competitions, Faster R-CNN and RPN are the foundations of the 1st-place winning entries in several tracks. Code has been made publicly available.
            Bookmark
            • Record: found
            • Abstract: not found
            • Conference Proceedings: not found

            You Only Look Once: Unified, Real-Time Object Detection

              Bookmark
              • Record: found
              • Abstract: not found
              • Conference Proceedings: not found

              Squeeze-and-Excitation Networks

                Bookmark

                Author and article information

                Journal
                Remote Sensing
                Remote Sensing
                MDPI AG
                2072-4292
                February 2023
                January 20 2023
                : 15
                : 3
                : 614
                Article
                10.3390/rs15030614
                7da6e743-2f74-4869-bf54-b334a79c354d
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article