61
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Oomycete pathogens encode RNA silencing suppressors.

      Nature genetics
      Gene Expression Regulation, Host-Pathogen Interactions, genetics, immunology, Infection, parasitology, Phytophthora, metabolism, pathogenicity, Plant Diseases, Plants, Proteins, RNA Interference, Signal Transduction, Virulence

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Effectors are essential virulence proteins produced by a broad range of parasites, including viruses, bacteria, fungi, oomycetes, protozoa, insects and nematodes. Upon entry into host cells, pathogen effectors manipulate specific physiological processes or signaling pathways to subvert host immunity. Most effectors, especially those of eukaryotic pathogens, remain functionally uncharacterized. Here, we show that two effectors from the oomycete plant pathogen Phytophthora sojae suppress RNA silencing in plants by inhibiting the biogenesis of small RNAs. Ectopic expression of these Phytophthora suppressors of RNA silencing enhances plant susceptibility to both a virus and Phytophthora, showing that some eukaryotic pathogens have evolved virulence proteins that target host RNA silencing processes to promote infection. These findings identify RNA silencing suppression as a common strategy used by pathogens across kingdoms to cause disease and are consistent with RNA silencing having key roles in host defense.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Origin, biogenesis, and activity of plant microRNAs.

          MicroRNAs (miRNAs) are key posttranscriptional regulators of eukaryotic gene expression. Plants use highly conserved as well as more recently evolved, species-specific miRNAs to control a vast array of biological processes. This Review discusses current advances in our understanding of the origin, biogenesis, and mode of action of plant miRNAs and draws comparisons with their metazoan counterparts.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis.

            Draft genome sequences have been determined for the soybean pathogen Phytophthora sojae and the sudden oak death pathogen Phytophthora ramorum. Oömycetes such as these Phytophthora species share the kingdom Stramenopila with photosynthetic algae such as diatoms, and the presence of many Phytophthora genes of probable phototroph origin supports a photosynthetic ancestry for the stramenopiles. Comparison of the two species' genomes reveals a rapid expansion and diversification of many protein families associated with plant infection such as hydrolases, ABC transporters, protein toxins, proteinase inhibitors, and, in particular, a superfamily of 700 proteins with similarity to known oömycete avirulence genes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants.

              In pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI), plant cell surface receptors sense potential microbial pathogens by recognizing elicitors called PAMPs. Although diverse PAMPs trigger PTI through distinct receptors, the resulting intracellular responses overlap extensively. Despite this, a common component(s) linking signal perception with transduction remains unknown. In this study, we identify SOMATIC EMBRYOGENESIS RECEPTOR KINASE (SERK)3/brassinosteroid-associated kinase (BAK)1, a receptor-like kinase previously implicated in hormone signaling, as a component of plant PTI. In Arabidopsis thaliana, AtSERK3/BAK1 rapidly enters an elicitor-dependent complex with FLAGELLIN SENSING 2 (FLS2), the receptor for the bacterial PAMP flagellin and its peptide derivative flg22. In the absence of AtSERK3/BAK1, early flg22-dependent responses are greatly reduced in both A. thaliana and Nicotiana benthamiana. Furthermore, N. benthamiana Serk3/Bak1 is required for full responses to unrelated PAMPs and, importantly, for restriction of bacterial and oomycete infections. Thus, SERK3/BAK1 appears to integrate diverse perception events into downstream PAMP responses, leading to immunity against a range of invading microbes.
                Bookmark

                Author and article information

                Comments

                Comment on this article