Blog
About

0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      iSuRe-Cre is a genetic tool to reliably induce and report Cre-dependent genetic modifications

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Most biomedical research aimed at understanding gene function uses the Cre-Lox system, which consists of the Cre recombinase-dependent deletion of genes containing LoxP sites. This system enables conditional genetic modifications because the expression and activity of the recombinase Cre/CreERT2 can be regulated in space by tissue-specific promoters and in time by the ligand tamoxifen. Since the precise Cre-Lox recombination event is invisible, methods were developed to report Cre activity and are widely used. However, numerous studies have shown that expression of a given Cre activity reporter cannot be assumed to indicate deletion of other LoxP-flanked genes of interest. Here, we report the generation of an inducible dual reporter-Cre mouse allele, iSuRe-Cre. By significantly increasing Cre activity in reporter-expressing cells, iSuRe-Cre provides certainty that these cells have completely recombined floxed alleles. This genetic tool increases the ease, efficiency, and reliability of conditional mutagenesis and gene function analysis.

          Abstract

          The Cre-Lox system allows high spatiotemporal control of genetic modifications. Here the authors present iSuRe-Cre that significantly increases Cre activity in reporter expressing cells, which ultimately increases the efficiency and reliability of Cre-dependent reporter and gene function analysis.

          Related collections

          Most cited references 29

          • Record: found
          • Abstract: found
          • Article: not found

          Conditional gene targeting in macrophages and granulocytes using LysMcre mice.

          Conditional mutagenesis in mice has recently been made possible through the combination of gene targeting techniques and site-directed mutagenesis, using the bacteriophage P1-derived Cre/loxP recombination system. The versatility of this approach depends on the availability of mouse mutants in which the recombinase Cre is expressed in the appropriate cell lineages or tissues. Here we report the generation of mice that express Cre in myeloid cells due to targeted insertion of the cre cDNA into their endogenous M lysozyme locus. In double mutant mice harboring both the LysMcre allele and one of two different loxP-flanked target genes tested, a deletion efficiency of 83-98% was determined in mature macrophages and near 100% in granulocytes. Partial deletion (16%) could be detected in CD11c+ splenic dendritic cells which are closely related to the monocyte/macrophage lineage. In contrast, no significant deletion was observed in tail DNA or purified T and B cells. Taken together, LysMcre mice allow for both specific and highly efficient Cre-mediated deletion of loxP-flanked target genes in myeloid cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Signal transduction by vascular endothelial growth factor receptors.

            Vascular endothelial growth factors (VEGFs) are master regulators of vascular development and of blood and lymphatic vessel function during health and disease in the adult. It is therefore important to understand the mechanism of action of this family of five mammalian ligands, which act through three receptor tyrosine kinases (RTKs). In addition, coreceptors like neuropilins (NRPs) and integrins associate with the ligand/receptor signaling complex and modulate the output. Therapeutics to block several of the VEGF signaling components have been developed with the aim to halt blood vessel formation, angiogenesis, in diseases that involve tissue growth and inflammation, such as cancer. In this review, we outline the current information on VEGF signal transduction in relation to blood and lymphatic vessel biology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transgenic mice with hematopoietic and lymphoid specific expression of Cre.

              Bacteriophage P1 Cre/loxP based systems can be used to manipulate the genomes ofmice in vivo and in vitro, allowing the generation of tissue-specific conditional mutants. We have generated mouse lines expressing Cre recombinase in hematopoietic tissues using the vav regulatory elements, or in lymphoid cells using the hCD2 promoter and locus control region (LCR). The R26R-EYFP Cre reporter mouse line was used to determine the pattern of Cre expression in each line and enabled the assessment of Cre activity at a single-cell level. Analysis showed that the vav promoter elements were able to direct Cre-mediated recombination in all cells of the hematopoietic system. The hCD2 promoter and LCR on the other hand were able to drive Cre-mediated recombination only in T cells and B cells, but not in other hematopoietic cell types. Furthermore, in the appropriate tissues, deletion of the floxed target was complete in all cells, thereby excluding the possibility of variegated expression of the Cre transgene. Both of these Cre-transgenic lines will be useful in generating tissue-specific gene deletions within all the cells of hematopoietic or lymphoid tissues.
                Bookmark

                Author and article information

                Contributors
                Rui.benedito@cnic.es
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                22 May 2019
                22 May 2019
                2019
                : 10
                Affiliations
                ISNI 0000 0001 0125 7682, GRID grid.467824.b, Molecular Genetics of Angiogenesis Group, , Centro Nacional de Investigaciones Cardiovasculares (CNIC), ; Madrid, E28029 Spain
                Article
                10239
                10.1038/s41467-019-10239-4
                6531465
                31118412
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                Funding
                Funded by: FundRef https://doi.org/10.13039/100010663, EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council);
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Uncategorized

                cell biology, developmental biology, genetics

                Comments

                Comment on this article