11
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Sex and Gender in Neurodegenerative Diseases

      Submit here before September 30, 2024

      About Neurodegenerative Diseases: 3.0 Impact Factor I 4.3 CiteScore I 0.695 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lithium- Sensitive Store-Operated Ca 2+ Entry in the Regulation of FGF23 Release

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background/Aims: Lithium, a widely used drug for the treatment of mood disorders, has previously been shown to stimulate the release of fibroblast growth factor FGF23, a powerful regulator of 1,25(OH)<sub>2</sub>D<sub>3</sub> formation and mineral metabolism. The cellular mechanisms involved have remained elusive. Lithium has been shown to modify Ca<sup>2+</sup> signaling. In a wide variety of cells, Ca<sup>2+</sup> entry is accomplished by the pore-forming Ca<sup>2+</sup> channel subunit Orai1 and its regulator STIM, which stimulates Orai following Ca<sup>2+</sup> depletion of intracellular stores. Transcription factors promoting Orai1 expression include NF-κB. The present study thus explored whether the effect of lithium on FGF23 involves and requires Ca<sup>2+</sup> entry. Methods: Experiments were performed in UMR106 osteoblastic cells and immortalized primary osteoblasts (IPO). FGF23 and Orai1 transcript levels were estimated from qRT-PCR, cytosolic Ca<sup>2+</sup> concentration ([Ca<sup>2+</sup>]<sub>i</sub>) from Fura2 fluorescence and store-operated Ca<sup>2+</sup> entry (SOCE) from an increase in [Ca<sup>2+</sup>]<sub>i</sub> following store depletion by inhibition of the sarcoendoplasmatic Ca<sup>2+</sup> ATPase (SERCA) with thapsigargin (1 µM). Results: SOCE in UMR106 cells was enhanced by lithium treatment, an effect abrogated by Orai1 inhibitor 2-APB (50 µM). FGF23 transcript levels were increased by lithium and inhibited by Orai1 inhibitors 2-APB (50 µM) and YM58483 (100 nM) as well as NF-κB inhibitors wogonin (100 µM) and withaferin A (500 nM). Moreover, Orai1 transcript levels were up-regulated by lithium, an effect attenuated by wogonin and withaferin A. Conclusion: Lithium stimulates FGF23 release at least in part by NF-κB dependent up-regulation of Orai1 transcription and store operated Ca<sup>2+</sup> entry.

          Related collections

          Most cited references105

          • Record: found
          • Abstract: found
          • Article: not found

          Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease.

          Fibroblast growth factor 23 (FGF23) regulates phosphorus metabolism and is a strong predictor of mortality in dialysis patients. FGF23 is thought to be an early biomarker of disordered phosphorus metabolism in the initial stages of chronic kidney disease (CKD). We measured FGF23 in baseline samples from 3879 patients in the Chronic Renal Insufficiency Cohort study, which is a diverse cohort of patients with CKD stage 2-4. Mean serum phosphate and median parathyroid hormone (PTH) levels were in the normal range, but median FGF23 was markedly greater than in healthy populations, and increased significantly with decreasing estimated glomerular filtration rate (eGFR). High levels of FGF23, defined as being above 100 RU/ml, were more common than secondary hyperparathyroidism and hyperphosphatemia in all strata of eGFR. The threshold of eGFR at which the slope of FGF23 increased was significantly higher than the corresponding threshold for PTH based on non-overlapping 95% confidence intervals. Thus, increased FGF23 is a common manifestation of CKD that develops earlier than increased phosphate or PTH. Hence, FGF23 measurements may be a sensitive early biomarker of disordered phosphorus metabolism in patients with CKD and normal serum phosphate levels.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Orai1 is an essential pore subunit of the CRAC channel.

            Stimulation of immune cells causes depletion of Ca2+ from endoplasmic reticulum (ER) stores, thereby triggering sustained Ca2+ entry through store-operated Ca2+ release-activated Ca2+ (CRAC) channels, an essential signal for lymphocyte activation and proliferation. Recent evidence indicates that activation of CRAC current is initiated by STIM proteins, which sense ER Ca2+ levels through an EF-hand located in the ER lumen and relocalize upon store depletion into puncta closely associated with the plasma membrane. We and others recently identified Drosophila Orai and human Orai1 (also called TMEM142A) as critical components of store-operated Ca2+ entry downstream of STIM. Combined overexpression of Orai and Stim in Drosophila cells, or Orai1 and STIM1 in mammalian cells, leads to a marked increase in CRAC current. However, these experiments did not establish whether Orai is an essential intracellular link between STIM and the CRAC channel, an accessory protein in the plasma membrane, or an actual pore subunit. Here we show that Orai1 is a plasma membrane protein, and that CRAC channel function is sensitive to mutation of two conserved acidic residues in the transmembrane segments. E106D and E190Q substitutions in transmembrane helices 1 and 3, respectively, diminish Ca2+ influx, increase current carried by monovalent cations, and render the channel permeable to Cs+. These changes in ion selectivity provide strong evidence that Orai1 is a pore subunit of the CRAC channel.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry.

              Store-operated Ca2+ entry is mediated by Ca2+ release-activated Ca2+ (CRAC) channels following Ca2+ release from intracellular stores. We performed a genome-wide RNA interference (RNAi) screen in Drosophila cells to identify proteins that inhibit store-operated Ca2+ influx. A secondary patch-clamp screen identified CRACM1 and CRACM2 (CRAC modulators 1 and 2) as modulators of Drosophila CRAC currents. We characterized the human ortholog of CRACM1, a plasma membrane-resident protein encoded by gene FLJ14466. Although overexpression of CRACM1 did not affect CRAC currents, RNAi-mediated knockdown disrupted its activation. CRACM1 could be the CRAC channel itself, a subunit of it, or a component of the CRAC signaling machinery.
                Bookmark

                Author and article information

                Journal
                NSG
                Neurosignals
                10.1159/issn.1424-862X
                Neurosignals
                S. Karger AG
                1424-862X
                1424-8638
                2015
                December 2015
                17 December 2015
                : 23
                : 1
                : 34-48
                Affiliations
                aDepartment of Physiology and bOral &amp; Maxillofacial Surgery, University of Tuebingen, Tuebingen, Germany; cInstitute of Agricultural and Nutritional Sciences, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
                Article
                442602 Neurosignals 2015;23:34-48
                10.1159/000442602
                26674092
                7dc30df2-95e3-4b6f-90ae-8a9ea77ecaa7
                © 2015 The Author(s) Published by S. Karger AG, Basel

                This article is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND). Usage and distribution for commercial purposes as well as any distribution of modified material requires written permission. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 28 November 2015
                Page count
                Figures: 7, References: 122, Pages: 15
                Categories
                Original Paper

                Geriatric medicine,Neurology,Cardiovascular Medicine,Neurosciences,Clinical Psychology & Psychiatry,Public health
                Calcium,2-APB,Orai1,STIM1,FGF23,1,25(OH)2D3 ,SOCE,Lithium

                Comments

                Comment on this article