6
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Local and Landscape Effects on Carrion-Associated Rove Beetle (Coleoptera: Staphylinidae) Communities in German Forests

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Simple Summary

          Increasing forest management practices by humans are threatening inherent insect biodiversity and thus important ecosystem services provided by them. One insect group which reacts sensitively to habitat changes are the rove beetles contributing to the maintenance of an undisturbed insect succession during decomposition by mainly hunting fly maggots. However, little is known about carrion-associated rove beetles due to poor taxonomic knowledge. In our study, we unveiled the human-induced and environmental drivers that modify rove beetle communities on vertebrate cadavers. At German forest sites selected by a gradient of management intensity, we contributed to the understanding of the rove beetle-mediated decomposition process. One main result is that an increasing human impact in forests changes rove beetle communities by promoting generalist and more open-habitat species coping with low structural heterogeneity, whereas species like Philonthus decorus get lost. Our results are not solely important for carrion ecological, but also for forensic entomological assessments on crime scenes, e.g., postmortem body relocation, because little information is available until now about rove beetles as one of the most important insect groups on bodies.

          Abstract

          Intensification of anthropogenic land use is a major threat to biodiversity and thus to essential ecosystem services provided by insects. Rove beetles (Coleoptera: Staphylinidae), which react sensitively to habitat changes, are species-rich colonizers of vertebrate cadavers and contribute to the important ecosystem service of carrion decomposition. The unveiling of anthropogenic and environmental drivers that modify carrion-associated rove beetle communities should improve our understanding of the plasticity of cadaver decay. We report the presence of 80 rove beetle species on 65 decomposing piglet cadavers at forest sites characterized by a gradient of management intensity across three geographic regions in Germany. Local and landscape drivers were revealed that shape beetle abundance, diversity, and community composition. Forest management and regions affect rove beetle abundance, whereas diversity is influenced by local habitat parameters (soil pH, litter cover) and regions. The community composition of rove beetles changes with management intensification by promoting generalist species. Regarding single species, Philonthus decorus and Anotylus mutator are linked to unmanaged forests and Ontholestes tessellatus to highly used forest stands. The spatial information provided about carrion-associated rove beetle communities in German forests is not only of carrion-ecological but also of forensic entomological interest.

          Related collections

          Most cited references68

          • Record: found
          • Abstract: found
          • Article: not found

          Global biodiversity scenarios for the year 2100.

          Scenarios of changes in biodiversity for the year 2100 can now be developed based on scenarios of changes in atmospheric carbon dioxide, climate, vegetation, and land use and the known sensitivity of biodiversity to these changes. This study identified a ranking of the importance of drivers of change, a ranking of the biomes with respect to expected changes, and the major sources of uncertainties. For terrestrial ecosystems, land-use change probably will have the largest effect, followed by climate change, nitrogen deposition, biotic exchange, and elevated carbon dioxide concentration. For freshwater ecosystems, biotic exchange is much more important. Mediterranean climate and grassland ecosystems likely will experience the greatest proportional change in biodiversity because of the substantial influence of all drivers of biodiversity change. Northern temperate ecosystems are estimated to experience the least biodiversity change because major land-use change has already occurred. Plausible changes in biodiversity in other biomes depend on interactions among the causes of biodiversity change. These interactions represent one of the largest uncertainties in projections of future biodiversity change.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A protocol for data exploration to avoid common statistical problems

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Global effects of land use on local terrestrial biodiversity

              Human activities, especially conversion and degradation of habitats, are causing global biodiversity declines. How local ecological assemblages are responding is less clear--a concern given their importance for many ecosystem functions and services. We analysed a terrestrial assemblage database of unprecedented geographic and taxonomic coverage to quantify local biodiversity responses to land use and related changes. Here we show that in the worst-affected habitats, these pressures reduce within-sample species richness by an average of 76.5%, total abundance by 39.5% and rarefaction-based richness by 40.3%. We estimate that, globally, these pressures have already slightly reduced average within-sample richness (by 13.6%), total abundance (10.7%) and rarefaction-based richness (8.1%), with changes showing marked spatial variation. Rapid further losses are predicted under a business-as-usual land-use scenario; within-sample richness is projected to fall by a further 3.4% globally by 2100, with losses concentrated in biodiverse but economically poor countries. Strong mitigation can deliver much more positive biodiversity changes (up to a 1.9% average increase) that are less strongly related to countries' socioeconomic status.
                Bookmark

                Author and article information

                Journal
                Insects
                Insects
                insects
                Insects
                MDPI
                2075-4450
                24 November 2020
                December 2020
                : 11
                : 12
                : 828
                Affiliations
                [1 ]Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, 89069 Ulm, Germany; jonas.kuppler@ 123456uni-ulm.de (J.K.); manfred.ayasse@ 123456uni-ulm.de (M.A.)
                [2 ]Richard-Wagnerstraße 9, 6020 Innsbruck, Austria; gregor.degasperi@ 123456gmail.com
                [3 ]Department of Evolutionary Animal Ecology, University of Bayreuth, 95447 Bayreuth, Germany; Sandra.Steiger@ 123456uni-bayreuth.de
                [4 ]Department of Conservation and Research, Bavarian Forest National Park, 94481 Grafenau, Germany; Christian.vonHoerman@ 123456npv-bw.bayern.de
                Author notes
                Author information
                https://orcid.org/0000-0002-6393-4308
                https://orcid.org/0000-0003-4409-9367
                https://orcid.org/0000-0002-9714-5665
                https://orcid.org/0000-0001-6487-1540
                Article
                insects-11-00828
                10.3390/insects11120828
                7760899
                33255456
                7dc3b209-14a6-45f4-a000-f299c19ece60
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 15 October 2020
                : 21 November 2020
                Categories
                Article

                rove beetle communities,land use,forest management,carrion decomposition,piglet cadaver,forensic entomology

                Comments

                Comment on this article