27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Acute stress may induce ovulation in women

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          This study aims to gather information either supporting or rejecting the hypothesis that acute stress may induce ovulation in women. The formulation of this hypothesis is based on 2 facts: 1) estrogen-primed postmenopausal or ovariectomized women display an adrenal-progesterone-induced ovulatory-like luteinizing hormone (LH) surge in response to exogenous adrenocorticotropic hormone (ACTH) administration; and 2) women display multiple follicular waves during an interovulatory interval, and likely during pregnancy and lactation. Thus, acute stress may induce ovulation in women displaying appropriate serum levels of estradiol and one or more follicles large enough to respond to a non-midcycle LH surge.

          Methods

          A literature search using the PubMed database was performed to identify articles up to January 2010 focusing mainly on women as well as on rats and rhesus monkeys as animal models of interaction between the hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonadal (HPG) axes.

          Results

          Whereas the HPA axis exhibits positive responses in practically all phases of the ovarian cycle, acute-stress-induced release of LH is found under relatively high plasma levels of estradiol. However, there are studies suggesting that several types of acute stress may exert different effects on pituitary LH release and the steroid environment may modulate in a different way (inhibiting or stimulating) the pattern of response of the HPG axis elicited by acute stressors.

          Conclusion

          Women may be induced to ovulate at any point of the menstrual cycle or even during periods of amenorrhea associated with pregnancy and lactation if exposed to an appropriate acute stressor under a right estradiol environment.

          Related collections

          Most cited references 72

          • Record: found
          • Abstract: found
          • Article: not found

          Likelihood of conception with a single act of intercourse: providing benchmark rates for assessment of post-coital contraceptives.

          Emergency post-coital contraceptives effectively reduce the risk of pregnancy, but their degree of efficacy remains uncertain. Measurement of efficacy depends on the pregnancy rate without treatment, which cannot be measured directly. We provide indirect estimates of such pregnancy rates, using data from a prospective study of 221 women who were attempting to conceive. We previously estimated the probability of pregnancy with an act of intercourse relative to ovulation. In this article, we extend these data to estimate the probability of pregnancy relative to intercourse on a given cycle day (counting from onset of previous menses). In assessing the efficacy of post-coital contraceptives, other approaches have not incorporated accurate information on the variability of ovulation. We find that the possibility of late ovulation produces a persistent risk of pregnancy even into the sixth week of the cycle. Post-coital contraceptives may be indicated even when intercourse has occurred late in the cycle.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effect of stress on the activity of the hypothalamic-pituitary-gonadal axis: peripheral and central mechanisms.

             C Rivier,  S Rivest (1991)
            This article reviews the mechanisms believed to mediate stress-induced inhibition of reproductive functions and the anatomical sites at which these effects take place. Particular emphasis is placed on the potential modulating role of hormones or neurotransmitters released during stress. At the level of the gonads, adrenal corticoids, pro-opiomelanocortin (POMC)-like peptides, and corticotropin-releasing factor (CRF) are reported to interfere with the stimulatory action of gonadotropins on sex steroid-producing cells. Increased circulating corticosteroid levels may also decrease pituitary responsiveness to GnRH. There is, however, increasing evidence that these mechanisms are primarily involved in mediating the effects of prolonged stress, but not those of an acute stimulus. In contrast, a variety of hormones or neurotransmitters, including CRF, POMC peptides, and biogenic amines act within the brain to mediate the inhibitory influence of both acute and prolonged stresses on reproductive function.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Variations in the hypothalamic-pituitary-adrenal response to stress during the estrous cycle in the rat.

               V Viau,  M. Meaney (1991)
              To investigate the role of gonadal steroids in the hypothalamic-pituitary-adrenal (HPA) response to stress, we studied adrenocorticotrophin (ACTH) and corticosterone (B) responses to 20-min restraint stress in cycling female rats, and in ovariectomized (OVX) rats replaced with physiological levels of estradiol (E2) and progesterone (P). In cycling rats, we found significantly higher peak ACTH (P less than 0.01) and B (P less than 0.05) responses to stress during proestrus compared to the estrous and diestrous phases. No differences were found in either basal ACTH and B levels across the cycle phases. In a separate study, OVX rats were maintained on low, physiological levels of E2 and P with silastic implants for 3 days, and injected either with oil (O'), 10 micrograms of E2 (E') 24 h before stress testing, or with E2 and 500 micrograms P 24 and 4 h, respectively, prior to stress (EP'). These treatments mimicked endogenous profiles of E2 and P occurring during diestrous, proestrous, and late proestrous-early estrous phases, respectively. In response to stress, ACTH levels were higher (P less than 0.01) in the E' group compared to the EP' and O' groups. Although the peak B response was similar in all groups, the E' and EP' groups secreted more B after the termination of stress than did the O' group. Within the 20 min stress period, ACTH levels in the E' group were significantly (P less than 0.05) higher at 5, 10, and 15 min after the onset of stress, compared to the EP' and O' groups. Plasma B levels were significantly higher in the E' group at 5 and 10 min (P less than 0.05 and P less than 0.01, respectively) compared to the EP' and O' group. beta-endorphin-like immunoreactive responses to restraint stress were also significantly higher in the E' group compared to the EP' (P less than 0.05) and O' (P less than 0.01) groups. In contrast to the effect seen at 24 h, ACTH responses to stress 48 h after E2 injection in the E' group were comparable to O' animals. There was no effect of E2 on ACTH clearance, whereas B clearance was enhanced in E' treated animals vs. O'-treated animals. These results indicate that the HPA axis in the female rat is most sensitive to stress during proestrous. Such enhanced HPA responses to stress are limited to the early portion of proestrous, as progesterone appears to inhibit the facilitatory effects of estrogen on ACTH release during stress. Taken together, these results suggest an ovarian influence on both activational and inhibitory components of HPA activity.
                Bookmark

                Author and article information

                Journal
                Reprod Biol Endocrinol
                Reproductive Biology and Endocrinology : RB&E
                BioMed Central
                1477-7827
                2010
                26 May 2010
                : 8
                : 53
                Affiliations
                [1 ]Department of Functional Biology and Physical Anthropology, Faculty of Biological Sciences, University of Valencia, Burjassot, Valencia 46100, Spain
                [2 ]Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan
                [3 ]Department of Pediatrics, Obstetrics and Gynecology, Faculty of Medicine, University of Valencia, Valencia 46010, Spain
                Article
                1477-7827-8-53
                10.1186/1477-7827-8-53
                2890612
                20504303
                Copyright ©2010 Tarín et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Categories
                Review

                Human biology

                Comments

                Comment on this article